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a b s t r a c t

Type-II multiferroic is an important area in the big family of multiferroics, in which its polarization
originates from the spin order, resulting in a strong magnetoelectric coupling. Here we briefly review
the previous mechanisms of the spin-order induced polarization, including the Katsura–Nagaosa–Balat
sky (KNB) model, inverse Dzyaloshinskii-Moria (DM) interaction model, exchange striction model, and
the bond polarization model. Then our unified polarization model is discussed in detail, which contains
pure electronic, ion displacement and lattice deformation contributions. And a feasible approach for
constructing the unified model based on the first-principles calculations is presented. With this model,
we unravel the microscopic mechanisms of the ferroelectricity in several typical multiferroics. New
type-II multiferroics with strong magnetoelectric coupling and giant polarization are expected to be
discovered and/or designed through the use of this model.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Multiferroics [1–7], in which magnetism, ferroelectricity and
ferroelasticity can coexist, have attracted great interest in the last
decades, not only for their fascinating physics but also for their
potential applications in memory devices, spintronics and magne-
toelectric sensors, etc. Multiferroicity occurs in both single phase
and composite materials. In composite multiferroics [8–12], the
magnetoelectric effect is usually generated as a product property
of a magnetostrictive and a piezoelectric substance. Hereafter we
only discuss the single phase multiferroics. Multiferroics are found
from 3d to 4f transition metal compounds and have perovskite
structures, spinel structures or pyrochlore structures, etc. The mag-
netism in multiferroics almost has the same origin: The partially
filled d or f shells of transition metal or rare earth ions. The
mechanism of the origin of the ferroelectric polarization is more
complicated. Khomskii [13] defines two types of multiferroics.
Type-I multiferroics are the materials in which ferroelectricity
and magnetism have different sources and appear largely indepen-
dent of one another. The coupling between the magnetism and
ferroelectricity in type-I multiferroics is usually weak. The repre-
sentative type-I multiferroics are Zn2FeTaO6 and Zn2FeOsO6 [14],
PbVO3 [15], BiFeO3 [16], BiMnO3 [17], and YMnO3 [18], etc. While
in type-II multiferroics, the ferroelectricity originates from special
spin orders: cycloid, proper screw, etc. The magnetic order breaks
the inversion symmetry in type-II multiferroics. Thus one would
expect strong magnetoelectric coupling in type-II multiferroics,
which provides a promising route for electrical writing and nonde-
structive magnetic readout memory devices. This new type of
memory devices has the advantages of high storage density, high
read-write speed and low energy consumption. The representative
type-II multiferroics are TbMnO3 [19], DyMnO3 [20], TbMn2O5 [21]
and CaMn7O12 [22,23], etc.

The magnetoelectric coupling in type-II multiferroics is much
stronger than that in type-I multiferroics. However, the polariza-
tion in most known type-II multiferroics is much smaller than
the traditional type-I multiferroics. This limits the realistic applica-
tions of type-II multiferroics. Therefore, discovering and/or design-
ing new type-II multiferroics with large polarization is an active
and important research area. To gain insight into the mechanism
of spin-order induced polarization in type-II multiferroics and
guide the search for new materials for room-temperature applica-
tions, several theories have been built up. In 2005, Katsura,
Nagaosa and Balatsky [24] proposed a microscopic pure electronic
model (i.e., KNB model) combined with spin orbit coupling (SOC)
and on site Coulomb repulsion to explain the polarization induced
by the spiral spin structure. Then in 2006, Sergienko and Dagotto
[25] attributed the polarization in RMnO3 (R = Gd, Tb, Dy) to the
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Fig. 1. (a) The cluster model with two transition metal ions M1, M2 with the
oxygen atom O between them. The spin current ~js /~e1 �~e2 arises from the
noncollinear spin direction~e1 and~e2. The direction of the electric polarization P

!
is

given by P
!/~e12 �~jS where ~e12 is the unit vector connecting M1 and M2. (b–d)

Some of the specific configurations ((b): cycloidal spiral, (c): proper screw, (d):
conical proper screw) where the geometrical relation among spins (black arrows),
spin current (gray arrows), and electric polarization are shown [24]. � 2005,
American Physical Society.
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inverse DM interaction. Both models require the same conditions,
namely, the SOC effect and noncollinear spin order. In the same
year, Sergienko, Sen and Dagotto [26] showed that the E-type
collinear magnetic order can also evoke ferroelectric polarization
even without SOC. Later, Jia et al. [27] proposed a bond polarization
model to explain the longitudinal polarization in the spin spiral
system. Some phenomenological theories based on symmetry
analysis have also been built to describe the coupling between
spin order and ferroelectric polarization [28]. More recently, we
[29–34] established a unified model for the microscopic mecha-
nism of spin-order induced ferroelectricity in multiferroics,
which includes the pure electronic, ion displacement and lattice
deformation contributions. It should be noted that in type-I
multiferroics, there may also exist spin-order induced polarization
and the model is also applicable.

In this review, we first briefly introduce the previous models.
Then our unified model will be discussed in detail.

2. Previous models for the spin-order induced ferroelectric
polarization

In this part, we briefly review the previous models of the
spin-order (both noncollinear and collinear) induced ferroelectric
polarization.

2.1. Noncollinear spin structure induced electric polarization

There are various types of noncollinear magnetic structures,
among which the two famous configurations are known as cycloi-
dal spiral and proper screw spin structures (see Fig. 1b and c). In
both cases the inversion symmetry is broken, where cycloidal
spiral spin configuration often induces polarization and proper
screw rarely produces polarization. In the following, we will
introduce various models of noncollinear spin structures induced
ferroelectric polarization.

2.1.1. KNB model
In 2005, Katsura, Nagaosa and Balatsky [24] proposed a micro-

scopic model to explain the origin of electric polarization induced
by noncollinear magnetic order. In their model, they first consider
a three atoms cluster (i.e. two magnetic ions and the ligand oxy-
gen ion) with inversion symmetry (Fig. 1(a)), and thus no DM
interaction appears. The low-energy Hilbert space here is two
dimensional with the basis generated from t2g orbitals plus the
on-site SOC effect. The Hamiltonian contains the on-site Coulomb
repulsion of the magnetic ions and the hopping processes between
the magnetic site and the oxygen site, and the hopping term is
treated as perturbation. After a series of derivation, they obtain a
concise result that the polarization direction is perpendicular to
both the spin current direction and the vector connecting the
magnetic ions. In both the double-exchange interaction and
superexchange interaction cases, the polarization has the same

form that P
!ffi A~e12 � ~e1 �~e2ð Þ (see Fig. 1(a)) where A is coefficient,

~e12 is the unit vector from site M1 to site M2 and~e1 and~e2 are the
noncollinear spin directions. The spin current between M1 and M2

is described as~js /~e1 �~e2.
With KNB model, one can easily find that the cycloidal spin

structure (see Fig. 1(b)) induces a net polarization, while the
proper screw spin structure (see Fig. 1(c)) gives no polarization.
In 2003, Kimura et al. [19] found spontaneous polarization and
strong magnetoelectric coupling in single crystal TbMnO3 below
27 K. And in 2005, Kenzelmann et al. [35] established the magnetic
structure of TbMnO3 using neutron diffraction. They confirmed
that the paraelectric, magnetically incommensurate phase
(28–41 K) holds a sinusoidally modulated collinear magnetic order.
In the ferroelectric phase (below 28 K), a noncollinear cycloidal
spiral spin structure lies in the bc plane. Applying the KNB model
to TbMnO3, one can deduce a reasonable result that no polarization
occurs in sinusoidally modulated collinear magnetic order and the
direction of polarization induced by cycloidal spiral spin structure
is along c axis which consists with experiment. Note that the
cations and anions are fixed in the KNB model, and it is a pure
electronic model. In Kimura and his coworkers’ [19] experiment
they found atomic displacements, which indicate KNB model
cannot explain experiment completely. Moreover, polarization
induced by proper screw spin configuration has also been observed
in MnI2 [36], CuFeO2 [37,38] and ACrO2 (A = Cu, Ag) [39], while
KNB model predicts a zero polarization in these systems.
2.1.2. Inverse Dzyaloshinskii–Moryia (DM) interaction model
In order to explain the experiment that cycloidal spiral spin

structure is accompanied by structural modulation in TbMnO3,
Sergienko and Dagotto [25] claimed that the noncollinear spin
structure originates from DM interaction and its inverse interac-
tion induces ferroelectric lattice displacement. DM interaction

has the form: D
!

ij � ½ S
!

i � S
!

j�, which was firstly proposed by
Dzialoshinski [40] in 1958 to phenomenologically explain the
weak ferromagnetism in a-Fe2O3. Then in 1960, Moriya [41] pre-
sented a microscopic picture by extending the theory of superex-
change interaction to include the effect of SOC. In ferroelectric
phase of TbMnO3, it distorts from the cubic perovskite structure
with the GdFeO3-type cooperative rotation of the MnO6 octahedra
[42], where the bond angle of Mn–O–Mn deviates from 180� to
about 145�. Adapting the symmetry analysis proposed by Moriya
[41], the DM vector is nonzero with the direction perpendicular
to the Mn–O–Mn bond plane. Sergienko and Dagotto [25] showed
that the DM interaction linearly depends on the displacements of
the O ions surrounding transition-metal ions. By minimizing the
Hamiltonian containing the anisotropic exchange interaction and
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the elastic energy with respect to the O ions displacements, one
can get a global finite O ions displacement and a net ferroelectric
polarization. Apparently, the inverse DM interaction model is a
pure ionic displacement model in which only the oxygen ions
can move and the cations are fixed.

Comparing the KNB model with the inverse DM interaction
model, we can find that they require the same conditions, namely,
SOC and spiral spin structure. They predict the same polarization
direction, but through different ways (i.e., pure electronic and pure
ionic, respectively). This is unsurprising that the Ginzburg–Landau
approach [28] claims the form of the polarization is:

P
!/ M

!�r
� �

M
!�M

!ðr �M!Þ, which gives the same result as the

KNB model and the inverse DM interaction model. In real materi-
als, the electronic wave function deformation and ionic displace-
ments always contribute to the total polarization simultaneously.
This limits the application of the KNB model and the inverse DM
interaction model to real materials. Both of the two models predict
no polarization in collinear spin systems.

2.1.3. Bond polarization model
In proper screw spin configurationwhere the spin rotation plane

is perpendicular to the spin propagation vector ~q, both the KNB
model and the inverse DM interaction model give a zero polariza-
tion. The representative systems are CuFeO2 [37,38] and ACrO2

(A = Cu, Ag) [39], whose magnetic structure is the helical spin spiral
order with~q ¼ ðQ ;Q ;0Þ, where Q � 1=3. Their polarization is paral-
lel to~q. In 2007, Arima [43] claimed that the ferroelectric polariza-
tion in CuFeO2 can be explained by the bond polarizationmodel. The
bond polarization model was proposed by Jia et al. [27] in 2006.
They adopted the sameM–O–Mclustermodel as that in KNBmodel.
The difference between them is that bond polarization model
contains a strong Hund coupling. They showed that there appears
a longitudinal polarization Px along the direction of the M–O–M

cluster, which is roughly proportional to ðmx
r Þ2 � ðmx

l Þ2 where mx
rðlÞ

is the x component of the spin orientation vector of the right (left)
magnetic ion. The SOC effect is necessary in this model. By adopting
this model, Arima suggested that the polarization in CuFeO2 origi-
nates from the variation in the d-p hybridization with SOC, and

the expression is P
!

ij / ð S!i �~eijÞ S
!

i � ð S!j �~eijÞ S
!

j, where~eij is the unit
vector along the spin dimer. However in the case of CuFeO2, the
magnetic ion Fe3+ itself is an inversion center, and bond polarization
model gives a zero total polarization, as we will show below.

Ba2CoGeO7 [44] shows tetragonal noncentrosymmetric struc-
ture with the space group P�421m. There are two inequivalent Co
sites in Ba2CoGeO7, but it is nonpolar in the paramagnetic phase.
Below TN ¼ 6:7 K, their spins align in a collinear antiferromagnetic
structure in the ab plane, and the ferroelectric polarization appears
along the c axis even at H ¼ 0. Through Landau phenomenological
theory, first principles calculations and microscopic model deriva-
tion, Yamauchi et al. [45] showed that the ferroelectricity in
Ba2CoGeO7 can be well explained by the bond polarization model,
where the anisotropic p-d hybridization between Co and O states
and the on-site SOC effect cause the local electric polarization.

2.2. Exchange striction model

Although the magnetoelectric coupling in noncollinear spin
multiferroics is strong, the polarization is always small in these
systems. This limits their realistic applications. The microscopic
driving force of the polarization in the noncollinear spin multifer-
roics is SOC, which is not strong in the 3d transition metals, and
leads to a small polarization. In 2006, Sergienko et al. [26] pre-
dicted ferroelectricity in orthorhombic perovskite HoMnO3

induced by E-phase magnetic structure. In contrast to the case
of spiral magnetic structure, the mechanism responsible for
ferroelecticity in HoMnO3 with the collinear magnetic structure
has nothing to do with SOC. The Mn atoms with parallel spins form
zigzag chains in the basal plane, and along the nearest neighbor
Mn–Mn linear direction the magnetic order is of the type ��
which obviously breaks the inversion symmetry. They attributed
the polarization to the enhancement of the double exchange inter-
action, which induces a global oxygen ion displacement, that the
bond angle of ferromagnetic Mn–O–Mn is larger than that of anti-
ferromagnetic Mn–O–Mn. Sergienko et al. [26] claimed that the
polarization of this type of multiferroic is two orders of magnitude
larger than that in spiral magnets. Picozzi et al. [46] verified this
prediction through first-principles calculations. The calculated
polarization of the AFM-E phase HoMnO3 is about 6 lC/cm2, con-
taining both ionic displacement and electronic deformation contri-
butions. Lorenz et al. [47] observed the magnetic transition and the
ferroelectric polarization in E-type phase of HoMnO3 in experi-
ment. Though the experimental magnitude of polarization is smal-
ler than the predicted value, it is expected that the polarization will
approach the theoretical value with the progress of the experimen-
tal technique and sample quality.

Another example that possesses exchange striction mechanism

[ P
!

ij / S
!

i � S
!

j

� �
] is Ca3CoMnO6 [48] discovered by Cheong’s group.

They measured the magnetic order of Ca3CoMnO6 by neutron
diffraction to be up-up-down-down (��) type. The Co2+ and Mn4+

ions alternate along the quasi-one-dimensional chains. This mag-
netic order (i.e. ��) breaks the inversion symmetry and the
exchange striction modulates the ferro(�) and antiferro("#) bond
lengths leading to a global ferroelectricity. Through first principles
calculations, Zhang et al. [49] confirmed that the �� spin order
could indeed induce a ferroelectric polarization in Ca3CoMnO6.
However, the magnitude of the predicted electric polarization is
much greater than that in experiment. The discrepancy may be
caused by the presence of different domains with opposite ferro-
electric polarization in a single crystal. Through first principles
calculations, Wang et al. [50] suggested that the spontaneous
polarization in TbMn2O5 [21] could also be explained by the
exchange striction model.

3. Unified model for the spin order induced improper
ferroelectric polarization

The previous models give some reasonable explanations of the
spin order induced improper ferroelectric polarization. However,
there are also some problems to be addressed. They are either the
pure electronic model (i.e., KNB model, bond polarization model)
or the pure ionic displacement model (i.e. inverse DM interaction
model, exchange stiction model). And some experimental results
(such as ferroelectric polarization induced by proper screw spin
order) could not be explained by previous models. Recently, we
[29–34] develop a unified model for spin order induced improper
ferroelectric polarization of multiferroics. This unified model can
explain the polarization induced by any spin structures: collinear,
cycloidal spiral, proper screw, etc. The total electric polarization

P
!

t ¼ P
!

tð S!1; S
!

2; . . . ; S
!

m;~u1;~u2; . . . ;~un;g1;g2; . . . ;g6Þ of a magnetic

system is a function of the spin direction S
!

i of the magnetic ion i,
the displacement ~uk of ion k and the homogeneous strain gj. Here

the spin order induced ion displacement ~uk and the homogeneous
strain gj are given with respect to a reference structure (usually
paraelectric structure). For simplicity, we use the notation

U
!¼ ~u1;~u2; . . . ;~unð Þ and H ¼ ðg1;g2; . . . ;g6Þ. Since the spin order
induced ion displacement ~uk and the strain gj are rather
small, the total FE polarization is estimated accurately by

P
!

t � P
!

e S
!

1; S
!

2; . . . ; S
!

m; U
!¼ 0;H ¼ 0

� �
þ P
!

ion;lattice U
!
;H

� �
, where
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P
!

e is the pure electronic contribution and P
!

ion;lattice is the ion dis-
placement and lattice deformation contributions (see Fig. 2). The
pure electronic contribution arises from the electron density redis-
tribution induced by the spin order. For the ion displacement part, it
results from the ion displacement caused by the induced forces
associated with the spin order. And the lattice-deformation contri-
bution results from the spin order induced stress.

3.1. Pure electronic contribution of spin order induced polarization

3.1.1. Theoretical derivation
First, we will derivate the pure electronic contribution. Consider

a spin dimmer in general case where the noncollinear spin arrange-
ment breaks the inversion symmetry and leads to a polarization.
Without loss of generality, we assume the distance vector from spin
1 to spin 2 is along the x axis. In general, the polarization is the func-

tion of spin 1 and spin 2, that is, P
!¼ P

!ðS1x; S1y; S1y; S2x; S2y; S2zÞ. The
expression of P

!
can be expanded as the Taylor series of

Siaði ¼ 1;2;a ¼ x; y; zÞ. The electric polarization is an invariant
under time reversal. Inverting the two spin directions simultane-
ously leave the electric polarization unchanged. The odd terms of
the Taylor expansion should vanish due to the time reversal sym-
metry. If the fourth and higher order terms are neglected (con-

firmed by first principles calculations), the expression of P
!

only
contains the second order terms. And here we classify the polariza-

tion as intrasite P
!

ið S
!

iÞði ¼ 1;2Þ and intersite P
!

12ð S
!

1; S
!

2Þ contri-
butions. Then P

!
can be written as

P
!¼ P

!
1 S

!
1

� �
þ P
!

2ð S
!

2Þ þ P
!

12ð S
!

1; S
!

2Þ; where

P
!

ið S
!

iÞ ¼
X
ab

P
!ab

i SiaSib; and P
!

12ð S
!

1; S
!

2Þ ¼
X
ab

P
!ab

12S1aS2b:
Fig. 2. Schematic illustration of three contributions to the electr
Here the coefficients P
!ab

i and P
!ab

12 are vectors. Apparently, we can

get the following relations: P
!ba

i ¼ P
!ab

i , P
!

ið S
!

iÞ ¼ P
!

ið� S
!

iÞ,
P
!

12ð� S
!

1; S
!

2Þ ¼ P
!

12ð S!1;� S
!

2Þ ¼ � P
!

12ð S!1; S
!

2Þ. The intersite term
can be written as:

P
!

12ð S!1; S
!

2Þ ¼
X
ab

P
!ab

12S1aS2b

¼ ðS1x; S1y; S1zÞ
P
!xx

12 P
!xy

12 P
!xz

12

P
!yx

12 P
!yy

12 P
!yz

12

P
!zx

12 P
!zy

12 P
!zz

12

2
66664

3
77775

S2x

S2y

S2z

2
664

3
775

¼ S
!T

1 P
!

int S
!

2

As in the case of spin exchange interactions [51], P
!

int can be

written as P
!

int ¼ P
!

J þ P
!

D þ P
!

C, where P
!

J , P
!

D and P
!

C are isotro-
pic symmetric diagonal matrix, antisymmetric matrix and aniso-
tropic symmetric matrix:

P
!

J ¼ 1
3

P
!xx

12 þ P
!yy

12 þ P
!zz

12 0 0

0 P
!xx

12 þ P
!yy

12 þ P
!zz

12 0

0 0 P
!xx

12 þ P
!yy

12 þ P
!zz

12

2
66664

3
77775

P
!

D ¼ 1
2

0 P
!xy

12 � P
!yx

12 P
!xz

12 � P
!zx

12

P
!yx

12 � P
!xy

12 0 P
!yz

12 � P
!zy

12

P
!zx

12 � P
!xz

12 P
!zy

12 � P
!yz

12 0

2
664

3
775
ic polarization induced by a spin order in multiferroics [30].
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P
!

C ¼
P
!xx

12 � 1
3ð P
!xx

12 þ P
!yy

12 þ P
!zz

12Þ 1
2ð P
!xy

12 þ P
!yx

12Þ 1
2ð P
!xz

12 þ P
!zx

12Þ
1
2ð P
!yx

12 þ P
!xy

12Þ P
!yy

12 � 1
3ð P
!xx

12 þ P
!yy

12 þ P
!zz

12Þ 1
2ð P
!yz

12 þ P
!zy

12Þ
1
2ð P
!zx

12 þ P
!xz

12Þ 1
2ð P
!zy

12 þ P
!yz

12Þ P
!zz

12 � 1
3ð P
!xx

12 þ P
!yy

12 þ P
!zz

12Þ

2
6664

3
7775:

In all known systems, the anisotropic symmetric term P
!

C is always
small and can be neglected.

The general formula for the polarization of a spin dimer can be
reduced in some special cases. First, we consider the case that the
SOC effect is absent. The polarization of the system should not
change under any global rotation of all the spins without SOC. In
this case, the expression of the polarization can be drastically

simplified. Now we show that P
!xx

12 ¼ P
!yy

12 ¼ P
!zz

12 without the SOC
effect. Consider two spin arrangements:

Arrangement I : S
!

1 ¼ ðSx;0;0Þ; S
!

2 ¼ ð0; Sy;0Þ

Arrangement II : S
!

1 ¼ ðSx;0;0Þ; S!2 ¼ ð0;�Sy;0Þ:
Arrangement II can be obtained by performing a spin rotation of

arrangement I along the x axis by 180�. Therefore, P
!xy

12 should be
zero because these two states have the same polarization without
the SOC effect. Similarly, one can show that all the nondiagonal
elements are zero. Now consider three spin arrangements that

Arrangement I : S
!

1 ¼ ðSx;0;0Þ; S!2 ¼ ðSx;0; 0Þ
Arrangement II : S

!
1 ¼ ð0; Sy;0Þ; S!2 ¼ ð0; Sy; 0Þ

Arrangement III : S
!

1 ¼ ð0; 0; SzÞ; S!2 ¼ ð0;0; SzÞ;
where Sx ¼ Sy ¼ Sz. The three arrangements share the same polar-
ization, because they are connected by the global rotations. Easily

we can get P
!xx

12 ¼ P
!yy

12 ¼ P
!zz

12. Therefore, we can obtain the ordinary

symmetric exchange striction term P
!

12ð S!1; S
!

2Þ ¼ P
!

esð S!1 � S!2Þ,
where P

!
es ¼ P

!xx
12 ¼ P

!yy
12 ¼ P

!zz
12.

Then let us consider a spin dimer with spatial inversion symme-
try at the center. Combining the time reversal symmetry and the

spatial inversion symmetry, we will show that P
!ab

1 ¼ � P
!ab

2 and

P
!ab

12 ¼ � P
!ba

12. Since all the coefficients should remain unchanged
in different spin configurations, we can choose special spin
arrangements to show the above two relations.

To prove P
!ab

1 ¼ � P
!ab

2 , we consider the following two spin
arrangements of the spin dimer.

Arrangement I : S
!

1 ¼ S
!

2 ¼ S
!¼ ðSx; Sy; SzÞ

Arrangement II : S
!

1 ¼ � S
!

2 ¼ S
!¼ ðSx; Sy; SzÞ:

By applying spatial inversion symmetry and S
!

1 ¼ S
!

2, we can

obtain the relations that P
!

Ið S!1; S
!

2Þ ¼ � P
!

Ið S!2; S
!

1Þ and

P
!

Ið S
!

1; S
!

2Þ ¼ � P
!

Ið S
!

1; S
!

2Þ, that is P
!

Ið S
!

1; S
!

2Þ ¼ 0. Similarly, we

can get P
!

IIð S
!

1; S
!

2Þ ¼ � P
!

IIð� S
!

1;� S
!

2Þ under spatial inversion
symmetry. Under time reversal symmetry, we can obtain the rela-

tion that P
!

IIð S
!

1; S
!

2Þ ¼ P
!

IIð� S
!

1;� S
!

2Þ. Finally we will get

P
!

IIð S!1; S
!

2Þ ¼ � P
!

IIð S!1; S
!

2Þ ¼ 0. The two arrangements I and II

provide opposite contributions to the intersite polarization P
!

12.

Therefore, the sum P
!

sum of the electric polarizations of these two
spin arrangements only contains the intrasite contributions.

P
!

sum ¼ 2 P
!

1ð S!1Þ þ 2 P
!

2ð S!2Þ ¼ 2
X
ab

P
!ab

1 þ P
!ab

2

� �
SaSb:

Since P
!

I ¼ P
!

II ¼ 0, then P
!

sum should also be zero. Since S
!

is

arbitrary, we finally obtain the relation P
!ab

1 ¼ � P
!ab

2 .
Similarly, to prove that P
!ab

12 ¼ � P
!ba

12, we can also construct two
spin arrangements with spatial inversion symmetry:

Arrangement I : S
!

1 ¼ S
!

and S
!

2 ¼ S
!0

Arrangement II : S
!

1 ¼ S
!0 and S

!
2 ¼ S

!
:

The intersite term of the polarizations for these two spin
arrangements is opposite, that is,X
ab

P
!ab

12SaS
0
b ¼ �

X
ab

P
!ab

12S
0
aSb ¼ �

X
ab

P
!ba

12S
0
bSa:

The above equation shows that P
!ab

12 ¼ � P
!ba

12, and hence

P
!aa

12 ¼ 0. With these relations we can reduce the intersite polariza-
tion as:

P
!

12ð S
!

1; S
!

2Þ ¼
X
ab

P
!ab

12S1aS2b

¼ P
!yz

12ð S
!

1 � S
!

2Þx þ P
!zx

12ð S
!

1 � S
!

2Þy
þ P
!xy

12ð S
!

1 � S
!

2Þz;

where ð S!1 � S
!

2Þa refers to the að¼ x; y; zÞ component of the vector

S
!

1 � S
!

2. Now we can rewrite the intersite polarization to be

P
!

12 ¼ M
!ð S!1 � S

!
2Þ with the 3 � 3 matrix M

!
:

M
!¼

ð P!yz
12Þx ð P!zx

12Þx ð P!xy
12Þx

ð P!yz
12Þy ð P!zx

12Þy ð P!xy
12Þz

ð P!yz
12Þz ð P!zx

12Þz ð P!xy
12Þz

2
6664

3
7775:

And the total electronic polarization of the noncollinear spin
dimer with spatial inversion symmetry is

P
!¼

X
ab

P
!ab

1 ðS1aS1b � S2aS2bÞ þM
!ð S!1 � S

!
2Þ:

Now we compare this model to the previous pure electronic
polarization models (i.e. KNB model [24] and bond polarization
model [27]). Without loss of generality, we define the distance
vector from spin 1 to spin 2 is taken along the x axis. If we set

the M
!

matrix to be M
!¼

0 0 0
0 0 �C
0 C 0

2
4

3
5, then the intersite term will

become to P
!

inter ¼ M
!ð S!1 � S

!
2Þ ¼ C

0
�ð S!1 � S

!
2Þz

ð S!1 � S
!

2Þy

2
64

3
75 ¼ C~e12�

ð S!1 � S
!

2Þ, and this is the KNB model. Thus KNB model is a special

case of the intersite polarization with ð P!zx
12Þz ¼ �ð P!xy

12Þy ¼ C. The

intersite term M
!ð S!1 � S

!
2Þ can be referred to as the generalized

KNB (gKNB) model. The bond polarization model can be obtained

by setting P
!xx

1 ¼ ðC;0;0Þ, P
!xy

1 ¼ P
!yx

1 ¼ ð0;C=2;0Þ, and P
!zx

1 ¼ P
!xz

1 ¼
ð0;0;C=2Þ. Then the intrasite polarization becomes to P

!
intra ¼

P
ab P
!ab

1 ðS1aS1b � S2aS2bÞ ¼ C
S1xS1x � S2xS2x
S1xS1y � S2xS2y
S1xS1z � S2xS2z

2
4

3
5 ¼ C ð S!1 �~e12Þ S!1�

h

ð S!2 �~e12Þ S
!

2�, where~e12 is the unit vector along the x axis. The bond
polarization model is a special case of the intrasite term of the total
electronic polarization. We notice that the KNB model and the
bond polarization are both derived from the three-atom linear
M–O–M cluster model, and they are special cases of our general
model.

When the magnetic ion itself is a spatial inversion center, the
single site term will vanish. By applying the spatial inversion
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symmetry, we can obtain the relation P
!

ið S
!

iÞ ¼ � P
!

ið S
!

iÞ, that is

P
!

ið S
!

iÞ ¼ 0. Since S
!

i is arbitrary, the coefficients P
!

i;ab should be
zero. This suggests that the electric polarization induced by the
spin order in CuFeO2 cannot be explained by the bond polarization
model as commonly believed in the literature.

In general, we can reformulate the spin order induced electronic

contributions to the total polarization as: P
!

e ¼
P

i;ab P
!

i;abSiaSibþP
hi;ji P

!ij
es~si �~sj þ

P
hi;jiM

!ijð~si �~sjÞ, where P
!

i;ab, P
!ij

es andM
!ij are the coef-

ficients of the single-site term, exchange striction term and general
spin current term, respectively. Note that the anisotropic symmetric

term P
!

C is neglected. The single-site term and the general spin cur-
rent term are SOC related, while the exchange striction term does
not depend on SOC. In magnetic multiferroics, the spin order
induced ion displacements are rather small (usually � 0:01 Å), so
the electronic contribution remains almost unchanged after ion
displacements. And we can choose a reference structure (usually a
paraelectric (PE) centrosymmetric structure, but it also works for
a proper FE case) to calculate the pure electronic contribution. The

single site term P
!

i;ab is usually small, but it is responsible for the
ferroelectricity in Cu2OSeO3 [32]. In CaMn7O12 [34] the exchange
striction term governs the magnitude of the polarization. The
general spin current term can well explain the mechanism of the
polarization in the helical magnetic order in MnI2 system [33].

3.1.2. Determine coefficients for the pure electronic contributions
To calculate the polarizations of the general model, one needs to

determine the expansion coefficients P
!

i;ab, P
!ij

es and M
!ij. We pro-

posed the so-called ‘‘four-states mapping” method to compute
these expansion coefficients, in which the polarizations are calcu-
lated for a set of carefully chosen four spin arrangements. One can
use substitution method to calculate the expansion coefficients for
a given spin dimer, in which the magnetic ions other than the
studied dimer are substituted with nonmagnetic ions. But this
method is less accurate.

We show how to compute P
!yz

ij of the M
!

matrix as an example
and the other coefficients can be extracted similarly (see Appendix
A). Combined with the SOC effect, we calculate the electric
polarizations of the following four spin arrangements for a spin

dimer S
!

i and S
!

j:

I : S
!

i ¼ ð0;1;0Þ; S
!

j ¼ ð0;0;1Þ
II : S

!
i ¼ ð0;1;0Þ; S

!
j ¼ ð0;0;�1Þ

III : S
!

i ¼ ð0;�1;0Þ; S
!

j ¼ ð0; 0;1Þ
IV : S

!
i ¼ ð0;�1;0Þ; S

!
j ¼ ð0; 0;�1Þ:

The other spins are set according to the experimental spin con-
figuration and remain unchanged during the four calculations. The

formula of the coefficient P
!yz

ij can be expressed as

P
!yz

ij ¼ P
!

Iþ P
!

IV� P
!

II� P
!

III

4 . This procedure is similar to the ‘‘four-
states mapping” method we proposed before to extract the DM
interaction parameters of a magnetic system [29,52].

3.2. Ion displacement and lattice deformation contributions for spin
order induced polarization

3.2.1. Theoretical derivation
In the previous section, we focus on the pure electronic contri-

butions. Here, we will discuss how a spin order influences the ion
displacement and lattice deformation, and subsequently induces a
ferroelectric polarization. The ion displacement contribution to the
polarization is obvious. The spin order induced lattice strain can
give rise to an additional electric polarization through the piezo-
electric effect [53,54]. For dielectric magnetic materials, the
response properties can be systematically revealed through the
electric–magnetic enthalpy as a function of ion displacement,
strain, extra magnetic and electric field. In general, the total energy

of a magnetic system can be written as Eðum;gj; S
!

iÞ ¼ EPMðum;gjÞþ
Espinðum;gj; S

!
iÞ, where um is the ion displacement of reference

structure for all the ions, gj is the homogeneous strain in Voigt

notation, and S
!

i is the spin vector of all the magnetic ions.
EPMðum;gjÞ is the energy of the paramagnetic state with the form
[53,55]:

EPM ¼ E0 þ
X
m

Amum þ
X
j

Ajgj þ
1
2

X
m;n

Bmnumun þ 1
2

X
j;k

Bjkgjgk

þ
X
m;j

Bmjumgj þ terms of third and higher orders:

The first order coefficients Am and Aj refer to the force and
stress, respectively. And the second order coefficients Bmn, Bjk and
Bmj represent the force constant, frozen-ion elastic constant, and
internal displacement tensor, respectively. Here the reference
structure is in equilibrium in the paramagnetic state, that is,
@EPM
@um

¼ @EPM
@gj

¼ 0. Then we have Am ¼ Aj ¼ 0.

The spin interaction energy Espin can be expanded as
Espin ¼ EH þ EDM þ ESIA, where EH is the Heisenberg symmetric
exchange interaction energy, EDM is the Dzyaloshinskii–Moriya
(DM) interaction energy and ESIA is the single-ion anisotropy
energy. EH , EDM and ESIA are the function of the ion displacement

um, homogeneous strain gj and the spin vector S
!

i. We can express
the Heisenberg symmetric interaction energy as EH ¼P

i;i0 J
0
i;i0 S
!

i � S
!

i0 þ
P

i;i0
@Ji;i0
@um

S
!

i � S
!

i0um þPi;i0
@Ji;i0
@gj

S
!

i � S
!

i0gj þPi;i0
@2 Ji;i0
@umun

S
!

i � S
!

i0umun þ P
i;i0

@2 Ji;i0
@gjgk

S
!

i � S
!

i0gjgk þ P
i;i0

@2Ji;i0
@umgj

S
!

i � S
!

i0umgjþ
terms of third and higher orders. Here J0i;i0 is the Heisenberg
symmetric exchange interaction parameter with um ¼ gj ¼ 0,

and
@Ji;i0
@um

,
@Ji;i0
@gj

,
@2 Ji;i0
@umun

,
@2Ji;i0
@gjgk

, and
@2Ji;i0
@umgj

are the derivatives of the exchange

parameters. Similarly, the DM interaction energy EDM and the sin-
gle ion anisotropy energy ESIA can also be expressed as the Taylor
expansion of um and gj. EDM and ESIA originate from the SOC effect
and always one order smaller than the symmetric exchange
interaction energy EH . Usually, we only consider the EH term.

Note that we use the implied-sum notation for m, n, j and k in
the expression of EH . The ion displacement and lattice deformation
caused by the spin order can be obtained by minimizing the total

energy Eðum;gj; S
!

iÞ with respect to um and gj, that is,

@Eðum ;gj ; S
!

iÞ
@um

¼ 0;

@Eðum ;gj ; S
!

iÞ
@gj

¼ 0:

8>><
>>:
Then we can get Bmnun þ Bmjgj ¼ � @EH

@um
, where @EH

@um
¼P

i;i0
@Ji;i0
@um

S
!

i � S
!

i0 �
P

i;i0
@2 Ji;i0
@umun

S
!

i � S
!

i0un � P
i;i0

@2 Ji;i0
@umgj

S
!

i � S
!

i0gj. Since

@2 Ji;i0
@umun

� Bmn,
@2 Ji;i0
@umgj

� Bmj, we finally obtain

Bmnun þ Bmjgj ¼ �
X
i;i0

@Ji;i0

@um
S
!

i � S
!

i0 ;

Bjkgk þ Bmjum ¼ �
X
i;i0

@Ji;i0

@gj
S
!

i � S
!

i0 :



454 P.S. Wang et al. / Computational Materials Science 112 (2016) 448–458
The ion displacement um and strain gj can be obtained by solv-
ing the above two linear equations. If the system in the PM state is
piezoelectric, the lattice deformation induced by spin order may
give rise to an additional electric polarization. The combined effect
of spin order induced stress and piezoelectricity in piezoelectric
crystal classes in PM state induces a lattice deformation contribu-
tion to the electric polarization. And the polarization induced by
the ion displacement um and strain gj can also be computed as
Pa ¼ Zamum þ eajgj, where Zam and eaj are the Born effective charge
and frozen-ion piezoelectric tensor, respectively.

Note that both the ion displacement and lattice deformation
contributions are included in Pa. If we want to obtain the polariza-
tion contribution due to the stress induced by spin order, we can

set �Pi;i0
@Ji;i0
@um

S
!

i � S
!

i0 ¼ 0. And the corresponding polarization can

be obtained by Pa ¼ dajrj, where rj ¼ �Pi;i0
@Ji;i0
@gj

S
!

i � S
!

i0 is the total

stress due to the spin order. We can get daj by using daj ¼ Sjkeak,
where Sjk and eak are the relaxed-ion elastic compliance tensor
and the relaxed-ion piezoelectric tensor, respectively.
3.2.2. Determine parameters of the model
Similar to the case of the pure electronic contribution, one can

also obtain the parameters of ion displacement and lattice defor-
mation contributions of the polarization. The Born effective
charges Zam, frozen-ion piezoelectric tensor eaj, force constant Bmn

and the internal-displacement tensor Bmj can be obtained by the
density functional perturbation theory (DFPT). And the frozen-ion
elastic constant Bjk can be easily obtained by calculating strain–
stress relation within DFT. In principle, these parameters are pre-
ferred to be obtained in the PM state. To a first approximation,
those obtained from the FM state are sufficient, which are readily
determined using the DFPT.

For the parameters
@Ji;i0
@um

, and
@Ji;i0
@gj

, we can also use the four-states

mapping method [31,52], where
@Ji;i0
@um

and
@Ji;i0
@gj

are calculated without

SOC. We consider the following four spin states for site i and i0:

I : S
!

i ¼ ð0;0;1Þ; S
!

i0 ¼ ð0; 0;1Þ
II : S
!

i ¼ ð0;0;1Þ; S
!

i0 ¼ ð0;0;�1Þ
III : S
!

i ¼ ð0;0;�1Þ; S
!

i0 ¼ ð0; 0;1Þ
IV : S
!

i ¼ ð0;0;�1Þ; S
!

i0 ¼ ð0;0;�1Þ
The other spins are set according to the experimental spin con-

figuration and remain unchanged during the four calculations. The

paramters can be easily obtained that:
@Ji;i0
@um

¼ 1
4

@EI
@um

þ @EIV
@um

� @EII
@um

� @EIII
@um

� �
and

@Ji;i0
@gj

¼ 1
4

@EI
@gj

þ @EIV
@gj

� @EII
@gj

� @EIII
@gj

� �
¼ � 1

4 ðrI
j þ rIV

j � rII
j � rIII

j Þ.
4. Applications of the unified model of spin order induced
ferroelectric polarization

The three parts of pure electronic polarization vary in different
materials. In Cu2OSeO3 [32], in which the magnetoelectric Sky-
mions have been observed, the single site term contributes its
polarization. While in CaMn7O12 [34], the direction of the electric
polarization is determined by the chirality of the helical magnetic
order due to the DM interaction, and its magnitude is governed by
the exchange striction. The polarization induced by the helical spin
order in MnI2 [33] can be well explained by the general spin cur-
rent term. In BiFeO3 [30], the pure electronic, ion displacement,
and lattice deformation contributions are of comparable
magnitude.

4.1. Combined effect of exchange striction and DM interaction in
CaMn7O12

CaMn7O12 [22,23] is a recent discovered multiferroic. Below
	440 K, it is transformed into a phase with the structure adopting
the space group R�3, in which there are one Mn4+ (Mn3) and six Mn3+

per formula unit (FU). The neutron diffraction measurements
show that in the temperature range of 48–90 K, CaMn7O12 adopts
a helical magnetic state with propagation vector ð0;1;0:963Þ. More
interestingly, it also exhibits a giant improper ferroelectric polar-
ization (2870 lC=m2) along the c direction after the onset of the
helical magnetic order at 90 K. To gain insights into the origin of
this giant improper polarization, we apply our unified model to
this system [34]. We first examine the ferroelectric polarization
of CaMn7O12 by using the experimental helical magnetic state
with the commensurate propagation vector ð0;1;1Þ. Our results
show that the ferroelectric polarization is along the c direction
with Pz ¼ 4496 lC=m2 from DFT + U + SOC calculations, but
Pz ¼ 3976 lC=m2 from DFT + U calculations. Thus, the giant impro-
per ferroelectric polarization in CaMn7O12 is mainly caused by the
exchange striction rather than by SOC since the spin dimers of
CaMn7O12 are noncentrosymmetric. According to our unified
model, for a spin dimer containing two spin sites 1 and 2 with

no inversion symmetry at the center, the polarization P
!

12 induced

by the spin arrangement ( S
!

1, S
!

2) in the absence of SOC effect can
be written as the usual symmetric exchange striction term

P
!

12ð S!1; S
!

2Þ ¼ P
!

esð S!1 � S!2Þ. If the distance between the magnetic
ions in a spin dimer is restricted to be shorter than 3.7 Å, there are
seven different spin exchange paths J1–J7 between the Mn13+,
Mn23+ and Mn34+ ions. For the seven exchange paths of the exper-

imental CaMn7O12 structure, we evaluate their P
!

es by performing
DFT + U calculations using the ‘‘four-states mapping” method
similar to that used to extract the spin exchange parameters. Our
calculations show that two exchange paths J4 and J5 have the

largest coefficients, that is, P
!4

es ¼ ð�0:024;�0:042;0:029ÞeÅ and

P
!5

es ¼ ð�0:026;�0:048;0:054ÞeÅ. The remaining spin exchange

paths have much smaller coefficients. The contribution of P
!5

es to

the total electric polarization vanishes by symmetry, but P
!4

es has
a large contribution to the total electric polarization. Because of
the threefold rotational symmetry, the total polarization is along
z axis. The polarization per Mn34+ from the exchange striction
mechanism can be written as

Pz ¼ P z
es;4 S

!
0 � ð S!1 � S

!
4 þ S

!
2 � S

!
5 þ S

!
3 � S

!
6Þ

h i
¼ 3P z

es;4 S
!

0 � ð S!1 � S
!

4Þ
¼ 3P z

es;4j S
!

4 � S
!

1j ðcosaÞ~ex þ ðsinaÞ~ey
� � �~eysign ~ez � ð S!4 � S

!
1Þ

h i
¼ 3

ffiffiffi
3

p
P z
es;4ðsinaÞsign ~ez � ð S!4 � S

!
1Þ

h i
;

where we set j S!ij ¼ 1, and define the unit vector~ex along the direc-

tion of S
!

1 þ S
!

4, and~ey orthogonal to~ex in the plane as in Fig. 3(a) so

that~ez ¼~ex �~ey points toward the readers. Thus if S
!

1 � S
!

4 is along

~ez, then S
!

4 � S
!

1 is along ~ey, i.e., S
!

1� S
!

4

j S
!

1� S
!

4 j
¼~eysign ~ez � ð S

!
4 � S

!
1Þ

h i
.

The spins of the two different sets make the angle of 120� between

them. Given a as the angle the spin vector S
!

0 makes with~ex. Thus
the magnitude of Pz depends almost linearly on a, since sina � a for



Fig. 3. (a, b) The top and side views of six Mn13+ and six Mn23+ ions surrounding a
Mn34+ ion. (c) The total energy and electric polarization as a function of the Mn34+

spin direction a [34]. � 2012 American Physical Society.
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small a [see Fig. 3(c)]. This result is consistent with the direct
DFT calculations. When a ¼ �30
, the polarization becomes
�4000 lC=m2. It should be noted that a indicates the orientation
of Mn34+, which is determined by the strong DM interaction in J4
path. Therefore, the large improper electric polarization in CaMn7-
O12 originates from the combined effect of the exchange striction
and DM interaction. Moreover, it can be found from the above equa-
tion that the direction of the polarization depends on the scalar

chirality of the helical magnetic structure r /~ez � ð S
!

4 � S
!

1Þ /
~r41 � ð S!4 � S

!
1Þ.

4.2. General spin current induced ferroelectric polarization in
triangular-lattice antiferromagnets

The layered iodide MnI2 [36], which crystallizes in the CdI2 type
structure with centrosymmetric space group P�3m1, exhibits
ferroelectricity under external magnetic field with the helical
spin-spiral order below phase transition temperature 3.45 K. The
magnetic ground state of MnI2 is proper screw, where spins rotate
within the plane perpendicular to the magnetic modulation vector
~k 	 ð0:181; 0;0:439Þ, and no polarization occurs in zero external

magnetic field. The in-plane component ~q of the ~k vector domi-
nates the ME properties of MnI2 as demonstrated in experiment,
and the spins favor to lie within the plane perpendicular to the
applied magnetic field H. Under a low in-plane magnetic field
(H < 3T), the proper screw spin order adopts the in-plane compo-

nent ~qkh1�10i, with the polarization P
!kh110i ?~q. When the exter-

nal in-plane magnetic field is in the range of 3T–7T, the

polarization P
!

is parallel to~qkh110i. In both cases the polarization
can flop when rotating the applied H along the [001] direction,
indicting strong ME coupling in this system.

We adopt the unified model to explain the polarization of
MnI2 [33]. Note that there exists spatial inversion symmetry at
the center of the Mn-Mn spin dimer, and the diagonal coefficients
of the intersite polarization vanish. Using the ‘‘four-states map-
ping” method, one can readily determine the expansion coeffi-

cients P
!ab

i and M
!

matrix for a given spin dimer. The coefficients
of the intrasite polarization are indeed negligible, for the fact that

Mn2+ ion itself is an inversion center. The M
!

matrix of the intersite

polarization are calculated as M
!¼

�4:8 0 0
0 39:5 49:0
0 �44:5 �26:0

2
4

3
5, in

units of 10�5 eÅ. This differs from the KNB model because the

matrix elements M11 ¼ ð P!yz
12Þx, M22 ¼ ð P!zx

12Þy and M33 ¼ ð P!xy
12Þz are

not zero and M23 ¼ ð P!xy
12Þy – �M32 ¼ ð P!zx

12Þz. Fig. 4(c) shows the
differences between the KNB and gKNB models in predicting the

polarization P
!
. Fig. 4(d) shows the polarization predicted by gKNB

model is in good agreement with the value directly calculated from
the density functional calculations for the given spin dimer.

We now compare the total ferroelectric polarization of
MnI2 extracted by the gKNB model and direct density functional
calculations. In the helical spin-spiral order, the sum of the intra-
site polarization is zero, and the intersite polarization for site i is

P
!tot

i ¼P6
k¼1 P

!
ik, which is the same for all i sites. So the total polar-

ization for site 0, shown in Fig. 4(b), is P
!tot

0 ¼P6
k¼1 P

!
0k ¼P6

k¼1M
!0kð S!0 � S

!
kÞ. For ~q ¼ ðQ ;0;0Þ, P

!tot
0 ¼

ffiffi
3

p
2 A;� 3

2A;0
� �

with

A ¼ ðM11 �M22Þsin2pQ . In the case of ~q ¼ ðQ ;Q ;0Þ,
P
!tot

0 ¼ 1
2B;

ffiffi
3

p
2 B;0

� �
with B ¼ ðM11 þ 3M22 � 4M11cos2pQÞsin2pQ .

Thus the gKNB model predicts that P
!?~q in the low applied field

that ~q ¼ ðQ ; 0;0Þ, but P
!k~q in the high applied field that

~q ¼ ðQ ;Q ;0Þ, which is consistent with the experiment. And the
polarization reverses when changing the spin chirality from right
to left (i.e. ~q to �~q), also in accord with the experiment. By setting
Q ¼ 1=3, the density functional calculations show that the elec-
tronic polarization of ~q ¼ ðQ ;0;0Þ is 58.8 lC/m2 along the ½0�10�
direction, and in the case of ~q ¼ ðQ ;Q ;0Þ, the polarization is
71.4 lC/m2 along the [110] direction. The density functional calcu-
lations are well agreement with the experiment. As can be seen
from Fig. 4(e) and (f), gKNB model can simultaneously provide
the correct direction and the accurate magnitude of the polariza-
tion. Thus, the polarization induced by the triangular lattice spin
order can be well explained by the general spin current term.

4.3. The spin order induced improper ferroelectric polarization in
BiFeO3

BiFeO3 [56–58] is a well-known room-temperature multifer-
roic. Its ground state structure adopts a R3c space group with a
large polarization (	 100 lC=cm2) [59] when the temperature is
lower than the FE curie temperature TC = 1000 K. Below the Neel
temperature TN = 650 K, a G-type AFM order with a long period
incommensurate modulation takes place. Furthermore, some
experiments reported the ME coupling in BiFeO3. However, how
magnetoelectric coupling actually occurs on a microscopic level
in multiferroic BiFeO3 is not clear. Then, we applied our unified
model to investigate the origin of the ME coupling in BiFeO3 [30].
We now turn to examine how the magnetoelastic coupling influ-
ences the electric polarization in BiFeO3. By solving the formula
in Part 3, we find that the strain is g ¼ ð�8:26;�8:26;
�35:58;0;0;0Þ in the order of 10�4 as a result of the G-AFM order-
ing. Mediated by the coupling between the polarization and strain,
the lattice change will induce a polarization. As can be seen in
Table 1, our model predicts a lattice-deformation contribution to
the polarization with a value of P ¼ 1:32 lC=cm2, which is even
larger than the sum of the pure electronic and ion displacement



Fig. 4. (a) The 5� 5� 1 supercell of MnI2. The left inset illustrates the layered structure of MnI2. (b) The triangular lattice of Mn2+ ions. (c) The electric polarizations predicted
by the KNB and gKNB models for three different spin configurations of the Mn-Mn dimer. (d) The polarization of the Mn–Mn pairs extracted by the gKNB model (line) and
direct density functional calculation (dot). (e and f). The spin orientations of two proper screw spirals with ~q ¼ 1

3 ;0;0
� �

and ~q ¼ 1
3 ;

1
3 ;0

� �
[33]. � 2011 American Physical
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contributions. This is an unprecedented result in which a previ-
ously unknown spin-order induced contribution to the electric
polarization is found to be even larger than the widely known con-
tributions. Table 1 also shows that the result obtained from our
model is in agreement with the direct DFT calculations. Summing
up all the three spin-order induced contributions shown in Table 1,
the total polarization calculated for the G-type AFM order in BFO
reaches 	 2lC=cm2. The spin-induced polarization in BFO is also
comparable with that of HoMnO3. Moreover, we find that the
direction of the polarization caused by the spin order is opposite
to the inherent electric polarization due to the R3c distortion. This
is consistent with a recent experimental observation. In the exper-
iment, the ion-displacement contribution deduced from the dis-
placement of the Fe ions was determined to be 0:4 lC=cm2 that
is close to the value (0:56 lC=cm2) obtained from our model.
Table 1
The different contributions to the electric polarization (in units of lC/cm2) induced by
the G-AFM order in BiFeO3 from the model and DFT calculations [30].

Polarization Plattice Pe Pion

Model 1.32 0.53 0.56
DFT 1.22 0.40 0.54
5. Summary

In this article, we review the mechanisms of spin order induced
improper ferroelectric polarization. We first outlined the previous
polarization models (e.g., KNB model, inverse DM interaction
model, exchange striction model, and bond polarization model)
discussed in the literature. We then discuss our unified model in
detail, which contains the pure electronic, ion displacement and
the lattice deformation contributions in a unified framework. The
previous models are the special cases of this unified model. This
unified model is general and is able to explain the spin order
induced ferroelectric polarization in almost all multiferroics. New
multiferroics with strong magnetoelectric coupling and large
polarization may be designed and/or predicted on the basis of this
unified model.

Acknowledgements

Work at Fudan was supported by NSFC, FANEDD, NCET-10-
0351, Research Program of Shanghai Municipality and MOE, the
Special Funds for Major State Basic Research, Program for Professor
of Special Appointment (Eastern Scholar), and Fok Ying Tung



P.S. Wang et al. / Computational Materials Science 112 (2016) 448–458 457
Education Foundation. H.X. thanks Prof. M.-H. Whangbo, Prof. S.-H.
Wei, Prof. S. Dong, Prof. E.J. Kan for the collaborations.

Appendix A. Four-states mapping method for computing
coefficients of pure electronic part of the unified model

The electronic contribution of polarization for a spin dimer is:

P
!¼ P
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coefficients as follows:
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The magnetic order of other magnetic ions is set according to
the experimental states and remains unchanged during the four

calculations. And one can easily obtain that P
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(4) For the diagonal terms, we note that
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To get the individual coefficients of the diagonal terms, we can

enforce the condition P
!xx

i þ P
!yy

i þ P
!zz

i ¼ 0, which removes the spin
independent contribution. Note that the single site term is SOC
related, so SOC is necessary in the calculations.

A.2. Exchange striction term

(5) The exchange striction interaction is independent on SOC

effect, so to extract the coefficients P
!ij

es one should exclude the
SOC effect. One can use the following four spin arrangements:
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j : ð"; "Þ
II: up-spin for S

!
i and down-spin for S

!
j : ð"; #Þ

III: down-spin for S
!

i and up-spin for S
!

j : ð#; "Þ
IV: down-spins for S

!
i and S

!
j : ð#; #Þ
In these four spin arrangements, the spin orientations for the
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A.3. General spin current term

(6) Now we extract the coefficients of general spin current term

M
!
.

To obtain the intersite polarization coefficient P
!yz

ij , we can
calculate the electric polarizations of the following four spin
arrangements:
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The others are set according to the experimental spin states and

remain unchanged during the four calculations. We can get
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IV� P
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To obtain the intersite polarization coefficient P
!zx

ij , we can
calculate the electric polarizations of the following four spin
arrangements:
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I : S
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II : S

!
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The others are set according to the experimental spin states and
remain unchanged during the four calculations. We can get

P
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To obtain the intersite polarization coefficient P
!xy

ij , we can
calculate the electric polarizations of the following four spin
arrangements:
I : S
!

i ¼ ð1;0;0Þ; S!j ¼ ð0;1;0Þ
II : S

!
i ¼ ð1;0;0Þ; S!j ¼ ð0;�1;0Þ

III : S
!

i ¼ ð�1;0;0Þ; S!j ¼ ð0;1;0Þ
IV : S

!
i ¼ ð�1;0;0Þ; S!j ¼ ð0;�1; 0Þ
The others are set according to the experimental spin states and
remain unchanged during the four calculations. We can get

P
!xy

ij ¼ P
!

Iþ P
!

IV� P
!
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!

III

4 .
The general spin current term originates from SOC effect. It is

necessary to include the SOC effect during the calculation. Note
that in the general cases (no inversion symmetry in the spin dimer)
all the coefficients of the intersite polarization should be fitted. In
most cases, the anisotropic term is small thus can be neglected.
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