Element analysis of samples using scanning electron microscopes (SEM) is widespread in materials science. A scanning electron microscope (SEM) provides not only topological information via surface images but also compositional information. In most cases, the microscopist will use energy-dispersive X-ray spectrometers (EDS) to analyze sample radiation created through the microscope’s electron beam.

This webinar discusses a complementary method: The use of a separate X-ray source equipped with polycapillary optics attached to the SEM to excite the sample and to evaluate the fluorescence radiation produced. This is known as micro-X-ray fluorescence spectrometry, or micro-XRF for short. Bruker’s Micro-XRF for SEM uses the EDS’ silicon drift detector and signal processing chain to form a complete micro-XRF spectrometer.

Although this method has been known for a number of years, its use in combination with a SEM is not very common, even though it has a range of benefits to offer. Our experts will explain this powerful addendum to EDS, which allows users to combine

  • the light-element sensitivity of EDS with trace element analysis in the mid to heavy element range by micro-XRF to improve the accuracy of quantification, and
  • the surface sensitivity of EDS with the volume analysis capabilities of micro-XRF.

The discussion of the technique will be complemented by the presentation of a number of application examples. Participants will have the chance to take part in a Q&A session at the end of the webinar.

Why should I attend?

  • Find out information on recent developments in this analytical technique
  • Learn more about how micro-XRF can extend the analytical capabilities of an SEM
  • Expand your knowledge in element analysis
  • Discuss your own applications with experts