These photos demonstrate the stretchiness of the entirely textile-based, bacteria-powered biobattery. Image: Seokheun Choi.
These photos demonstrate the stretchiness of the entirely textile-based, bacteria-powered biobattery. Image: Seokheun Choi.

A research team led by scientists at Binghamton University, State University of New York has developed an entirely textile-based, bacteria-powered bio-battery that could one day be integrated into wearable electronics. The biobattery is a form of microbial fuel cell, which produces electricity from the breakdown of organic material by microbes, and is reported in a paper in Advanced Energy Materials.

The team, led by Seokheun Choi, assistant professor of electrical and computer science at Binghamton University, created an entirely textile-based biobattery that can produce maximum power similar to that produced by previous paper-based microbial fuel cells. Additionally, these textile-based biobatteries exhibit stable electricity-generating capability when tested under repeated stretching and twisting cycles.

Choi said that this stretchable, twistable power device could establish a standardized platform for textile-based biobatteries and could potentially be integrated into wearable electronics in the future.

"There is a clear and pressing need for flexible and stretchable electronics that can be easily integrated with a wide range of surroundings to collect real-time information," said Choi. "Those electronics must perform reliably even while intimately used on substrates with complex and curvilinear shapes, like moving body parts or organs. We considered a flexible, stretchable, miniaturized biobattery as a truly useful energy technology because of their sustainable, renewable and eco-friendly capabilities."

Compared to traditional batteries and other enzymatic fuel cells, microbial fuel cells are a more suitable power source for wearable electronics, because the whole microbial cell acts as a biocatalyst, providing stable enzymatic reactions and a long lifetime, said Choi.

Sweat generated from the human body can be a potential fuel to support bacterial viability, ensuring the long-term operation of the microbial fuel cells.

"If we consider that humans possess more bacterial cells than human cells in their bodies, the direct use of bacterial cells as a power resource interdependently with the human body is conceivable for wearable electronics," said Choi.

This story is adapted from material from Binghamton University, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.