Glass is strong enough for so much: windshields, buildings and many other things that need to handle high stress without breaking. But scientists who look at the structure of glass strictly by the numbers believe some of the latest methods from the microelectronics and nanotechnology industry could produce glass that’s about twice as strong as the best available today.

Their calculations were based on a modified version of a groundbreaking mathematical model that Wolynes first created to answer a decades-old conundrum about how glass forms. With the modifications, a theory can now predict the ultimate strength of any glass, including the common varieties made from silica and more exotic types made of polymers and metals.

If metal glass sounds odd, blame it on the molecules inside. Glass is unique because of its molecular structure. It freezes into a rigid form when cooled. But unlike ice, in which water molecules take on regular crystalline patterns — think of snowflakes — the molecules in glass are suspended randomly, just as they were as a liquid, with no particular pattern. The strong bonds that form between these randomly-arrayed individual molecules are what hold the glass together and ultimately determine its strength.

All glasses share the ability to handle a great deal of strain before giving way, sometimes explosively. Exactly how much strain a glass can handle is determined by how much energy it can absorb before its intrinsic elastic qualities reach their limitations. And that seems to be as much a property of the way the glass is manufactured as the material it’s made of.

Materials scientists have long debated the physics of what occurs when glass hardens and cools. In fact, the transition is one of their last great puzzles of the field. Cooling temperatures for particular kinds of glass are well defined by centuries of experience, but Wolynes argues it may be possible to use this information to improve upon glass’s ultimate strength.

The elastic properties of the finished product and the configurational energy (the positive and negative forces between the molecules) held in stasis by the “freezing” process determine how close a glass gets to the theoretical ideal.

This story is reprinted from material from RICE, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.