When Lawrence Berkeley National Laboratory scientist Frances Houle considers the national alarm that has sounded over the shortage of rare earth materials—critical ingredients in a wide range of clean-energy and medical technologies—she tends not to panic.

That’s not to say there isn’t a problem. Indeed, more than 90 percent of the world’s rare earth elements are now mined in China, and worldwide demand is anticipated to grow from 136,100 metric tons in 2010 to 185,000 metric tons in 2015, according to the June report by the Congressional Research Service.

Building on its legacy of a team science approach to solving the nation’s problems, Berkeley Lab is taking a multidisciplinary approach to the issues. David Shuh, a senior scientist in Berkeley Lab’s Chemical Sciences Division, and Houle are the co-lead investigators on a Berkeley Lab project that aims to reduce current shortages and prevent future materials from becoming “critical materials” by taking advantage of advances in nanoscience, chemistry, materials science, computation and theory, physics, genomics and energy analysis techniques—all strengths of Berkeley Lab— and of use of Department of Energy national user facilities located throughout the country to devise innovative short- and long-term solutions to critical materials issues.

Shuh notes that 30 years ago, the United States was fretting over a very different set of critical materials. “Back then it was cobalt, nickel, titanium, which are used to make magnets, alloys and materials for high-performance applications such as in aerospace,” he said.

The problem is compounded now as the Earth’s population grows and living standards rise around the world, putting pressure on the supply of natural resources. “These criticality events could become more common if solutions are not developed,” Shuh said.

The rare earth metals now in short supply, including dysprosium, neodymium, europium and ytterbium, are used in applications such as magnets, batteries, fuel cells, hybrid engines, lasers and the color for TV and computer screens. Besides rare earths, the clean energy economy is reliant on a number of other elements facing limited and fluctuating supplies, including lithium for batteries, rhenium for metal alloys and several elements used in photovoltaics, such as cadmium, tellurium and gallium.

Indium is another metal that has seen wild fluctuations in price and demand over the last few decades. It is used in LCDs and glass coatings. “Every time they introduce a new technology the price of indium goes nuts,” said Houle. “First it went up when laptops were introduced, then it stabilized, and then there was an enormous spike when flat screen TVs were introduced.”

Current research is underway to provide alternatives to indium tin oxide (ITO) with other materials systems, namely zinc oxide and graphene.

The long-term view needs to encompass the future as well as the past. Materials need to be considered before a technology is even designed. “A lot of things are going to change over the next 30 years in terms of how we develop new technologies,” Houle said. “Before we didn’t worry at all about materials availability or environmental consequences. That’s what’s going to change.”

Houle cites the California Gold Rush as an example of doing things without regard to the consequences. “The environmental impacts were quite severe and persist to this day. I point to that as a lesson,” she said. “Now we understand that the Earth is finite, and we can’t just pick whatever off the shelf and build a technology without understanding the consequences.”

This story is reprinted from material from Berkeley Lab, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.