New research shows that existing copper resources can sustain increasing world-wide demand for at least a century, meaning social and environmental concerns could be the most important restrictions on future copper production.

Researchers from Monash University have conducted the most systematic and robust compilation and analysis of worldwide copper resources to date. Contrary to predictions estimating that supplies of this important metal would run out in around 30 years, the research has found there are plenty of resources within the reach of current technologies.

The database was compiled by Dr Gavin Mudd and Zhehan Weng from Environmental Engineering and Dr Simon Jowitt from the School of Geosciences. It is based on mineral resource estimates from mining companies and includes information vital for carbon and energy-use modelling, such as the ore grade of the deposits.

Dr Jowitt said the database could change the industry's understanding of copper availability.

Dr Mudd said the vast volumes of available copper meant the mining picture was far more complex than merely stating there were 'x' years of supply left.

Despite examples like the Ok Tedi mine in Papua New Guinea, where mining has continued despite widespread environmental degradation that has affected thousands of residents, non-economic factors have constrained some mining operations and the researchers believe this will become increasingly important in the near future. An example is the Pebble copper-gold project in Alaska, which after more than a decade still doesn't have the necessary approvals due to the environmental and cultural concerns of nearby residents.

The researchers will now undertake detailed modelling of the life cycles and greenhouse gas impacts of potential copper production, and better assessment of future environmental impacts of mining.

They will also create similar databases for other metals, such as nickel, uranium, rare earths, cobalt and others, in order to paint a comprehensive picture of worldwide mineral availability.

This story is reprinted from material from Monash University, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.