The size and distribution of precipitates in Al 7075 alloys affects both the mechanical and corrosion behavior (including stress corrosion cracking and fatigue corrosion) of the alloy. Three dimensional (3D) quantitative microstructural analysis of Al 7075 in the peak aged condition (T651) allows for a better understanding of these behaviors. In this study, Focused ion beam (FIB) tomography was used to characterize the microstructure in three dimensions. 

Analysis of grains and precipitates was performed in terms of volume, size, and morphology. It was found that the precipitates at the grain boundaries are larger in size, higher in aspect ratios and maximum Feret diameter compared to the precipitates inside the grains, due to earlier nucleation of the precipitates at the grain boundaries. Our data on the precipitates at the interface between grains and Mg2Si inclusion show that the surfaces of inclusion (impurity) particles can serve as a location for heterogeneous nucleation of precipitates.

This article originally appeared in Materials Characterization118, 2016, Pages 102–111.

Log in to your free Materials Today account to download the full article.

Already a Materials Today member?

Log in to your Materials Today account to access this feature.