Block copolymers in a selective solvent have a tendency to self-assemble at surfaces and into micelles1–4. At an aqueous interface, the amphiphilic property of block copolymers composed of hydrophilic and hydrophobic segments can cause the distal end of the hydrophilic chain to extend into the bulk aqueous solution, anchoring the hydrophilic block to the substrate surface through hydrophobic segments1, 2. In an aqueous solution, micelles with core-shell structure are formed by the segregation of insoluble blocks into the core, which is surrounded by a hydrophilic shell composed of hydrophilic blocks3, 4. This interfacial activity of amphiphilic block copolymers provides their utility in the biomedical field as colloidal dispersants, surface modifiers and drug carriers, prompting many studies of block copolymer adsorption on solid surfaces5, 6, 7, 8, force measurements between tethered layers9, 10, 11 and the characterization of micelle properties12, 13, 14.

Read full text on ScienceDirect

DOI: 10.1016/S1369-7021(01)80036-5