Organic electronic materials are of interest for future applications in solar cells. Although results for single layer organic materials have been disappointing, high photocurrent quantum efficiencies can be achieved in composite systems including both electron donating and electron accepting components. Efficiencies of over 2% have now been reported in four different types of organic solar cell. Performance is limited by the low red absorption of organic materials, poor charge transport, and low stability. These problems are being tackled by the synthesis of new materials, the use of new materials combinations, and optimization of molecular design, self-assembly, and processing conditions to control morphology. Power conversion efficiencies of over 5% are within reach, but the fundamental physics of organic donor-acceptor solar cells remains poorly understood.The last two years have seen an unprecedented growth of interest in solar cells made from organic electronic materials. This is partly due to the rapid growth of the photovoltaic market1, which has stimulated research into longer term, more innovative photovoltaic technologies, and partly to the development of organic electronic materials for display applications. The rapid progress in optoelectronic molecular materials has introduced a range of potential new photovoltaic materials, as well as an improved understanding of the capabilities of such materials and confidence in their application2.

Read full text on ScienceDirect

DOI: 10.1016/S1369-7021(02)05532-3