Magnesium Elektron, a developer of magnesium alloys, has achieved ISO 13485:2012 certification for its SynerMag Technology Centre. ISO 13485:2012 is an internationally recognized quality standard for medical devices. The certification means that SynerMag alloy designs, manufacturing and business processes, including supplier controls, traceability and documentation, are now in line with the standards of the medical industry.

Magnesium Elektron has been working closely with medical device companies around the world for a number of years to develop and supply its SynerMag bioabsorbable magnesium alloys used in development of cardiovascular and trauma fixation implants. In 2012, the company established a dedicated manufacturing facility incorporating laboratories, casting, extrusion and heat-treatment facilities.

SynerMag alloy designs, manufacturing and business processes are now in line with the standards of the medical industry.
SynerMag alloy designs, manufacturing and business processes are now in line with the standards of the medical industry.

Property benefits

Global research into bioabsorbable materials has increased significantly in recent years, particularly for vascular intervention and orthopedic trauma fixation in which the use of metallic implants is today commonplace. Magnesium is an essential nutrient for the human body and can be absorbed and broken down over time. Alloys based on the element offer the potential to combine the mechanical property benefits of metallic implants with the bioabsorbable nature of degradable polymers.

‘This new ISO certification is a major milestone in our quest to take a leadership role in the development and manufacture of bioabsorbable metallic materials,’ said Graham Wardlow, MD of Magnesium Elektron operations in the U.K. ‘We can now offer our medical device partners across the globe a class-leading manufacturing and testing facility that will fully support their development and production activities.’

This story is reprinted from material from Magnesium Elektron, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier.