Andrew Binder (pictured) and his colleagues developed their new catalyst by mixing together copper oxide, cobalt oxide and cerium oxide. Image: ORNL.
Andrew Binder (pictured) and his colleagues developed their new catalyst by mixing together copper oxide, cobalt oxide and cerium oxide. Image: ORNL.

A catalyst being developed by researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) could overcome one of the key obstacles preventing automobile engines from running more cleanly and efficiently.

The mixed oxide catalyst could solve the longstanding problem of inhibition, in which nitrogen oxides, carbon monoxide and hydrocarbons effectively clog the catalyst that is meant to cleanse a vehicle's exhaust stream. This happens as these three pollutants compete for active surface sites on the catalyst. Now, however, ORNL researchers have developed a low-cost catalyst composed of copper oxide, cobalt oxide and cerium oxide that shows considerable promise when tested in simulated exhaust streams.

"Our catalyst potentially fixes the inhibition problem without precious metals and could help more efficient engines meet upcoming stricter emission regulations," said Todd Toops of ORNL's Energy and Transportation Sciences Division. Toops noted that the unique formulation builds on previous work by colleagues Andrew Binder and Sheng Dai, who varied the composition of the three catalyst components in search of improved oxidation activity under simple conditions.

The inhibition problem is actually getting worse as automobile engines become more fuel efficient. This is because these efficiency gains mean lower exhaust temperatures, but conventional catalysts perform more efficiently at high temperatures. The hundreds of different hydrocarbons present in exhaust fumes pose perhaps the biggest challenge.

"As we make engines more efficient, less wasted heat exits the engine into the exhaust system where catalysts clean up the pollutant emissions,” explains Jim Parks, another member of the Energy and Transportation Sciences Division. "The lower temperatures in the exhaust from the more efficient engines are lower than the typical operating range of catalysts, so we need innovations like this catalyst to lower the operating range and control the engine pollutants."

This finding, published in the Angewandte Chemie, is encouraging, the authors note, as "vehicles with internal combustion engines will likely remain a dominant fraction of the light-duty fleet in both hybrid and conventional drivetrains".

Binder, Toops, Parks and Dai performed extensive tests using different ratios of copper oxide, cobalt oxide and ceria to determine the optimum ratio, which was initially evaluated at an atomic ratio of 1:5:5, respectively. Next, the researchers will determine the scalability of this approach and perform cost-benefit analyses.

This story is adapted from material from ORNL, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.