The last few weeks have been a particularly busy time, as I’ve been lucky enough to attend several meetings in the UK and Ireland, with a focus on two-dimensional materials. The first meeting I visited was the second in the Graphene Supply, Application & Commercialisation series. I attended the previous meeting last year; both events were of a (very) different type to the academic meetings many of us frequently attend, but it was nevertheless an interesting experience. Not only did the meeting provide a snapshot of the rapid progress in the field over the last 12 months, but also provided the opportunity to take a look at the research from a different perspective; that of those in the commercial sector looking to make use of graphene in many of the applications we’ve discussed here in Materials Today. It was clear from the meeting that the while the potential for graphene is indeed great, the road is a long one. While some applications involving the use of graphene in composites to improve or alter mechanical and electrical properties have already arrived, exploiting the full potential of graphene in advanced, commercially available medical and electronic devices could be decades away.

After a quick visit to the Royal Microscopical Society's Microscience Microscopy Congress I then had the opportunity to visit the Flatlands: Beyond Graphene meeting in Dublin. And here, in the more traditional conference environment, the discussion was focused on the ‘other’ two-dimensional materials, including ‘X-enes’ (including new materials such as silicene), ‘MX-enes’ (such as Ti2AlC) and 2D Transition-Metal Dichalcogenides (such as MoS2). And while the emphasis here was very much on the science behind these materials, in the context of my earlier trip it provided me with the chance to reflect on the road to application of these materials and the opportunities that lie ahead: it has only been 10 years since the groundbreaking experiments of Geim and Novoselov, and studies of these ‘other’ materials are not far behind (if indeed at all).

And so as we look to new applications, I’ll introduce this new issue of Materials Today. We begin with an introduction to quantum fluids in the form of Bose-Einstein condensates within solid in materials, from Thilo Stöferle and Rainer F. Mahrt. Moving on to the review articles, Dwight Viehland and colleagues begin by taking a look at the status and challenges of magnetoelectric laminates in sensor applications. Next Huisheng Peng et al. discuss miniature energy harvesting and storage devices in modern electronics for applications in 21st century electronics, looking at wire-shaped solar cells, electrochemical capacitors and lithium-ion batteries. Sticking with the theme of energy, and lithium-ion batteries in particular, Yang-Kook Sun and coworkers review the use of Si-based nanocomposite materials as high capacity anode materials, exploring their electrochemical performances, as well as technical issues. Finally, Manju Saraswathy and Shaoqin Gong look at cancer treatment in the form of the co-delivery of siRNA and small molecule anticancer drugs. Opening and closing this issue Jinzhang Liu and Nunzio Motta describe their nanonail flower and the road towards tailored ZnO nanostructures.

And so, until next time enjoy, this issue of Materials Today.

Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2014.07.001