Tunneling magnetoresistance is one of the basic effects of spintronics with the potential for applications in sensors and IT, where the spin degree of freedom of electrons is exploited. Successful application requires control of the materials and processes involved on the atomic scale. To support experimental developments, predict new materials, and optimize the effect, first-principle electronic structure calculations based on density functional theory are the most powerful tool. The method gives an insight into the microscopic origin of spin-dependent tunneling. The main components of a planar tunnel junction – barrier, leads, and their interface – and their specific role for tunneling magnetoresistance are discussed for one of the standard systems, Fe/MgO/Fe.

Read full text on ScienceDirect

DOI: 10.1016/S1369-7021(06)71694-7