To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on properties such as thermal conductivity, oxygen diffusivity, and thermal expansion. The multi-scale approach is illustrated using results on ceramic fuels, with a focus on predictions of point defect concentration, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, and gas bubble formation and evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the paper is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiatives are proposed to accelerate the discovery and design of new materials: (a) Create Institutes for Materials Discovery and Design, (b) Create an International Knowledgebase for experimental data, models (mathematical expressions), and simulations (codes), (c) Improve education and (d) Set up international collaborations.

Read full text on ScienceDirect

DOI: 10.1016/S1369-7021(09)70295-0