National Institutes of Health, USA (upper left) and the National Center for Nanoscience and Technology, China (upper right) are the heart of each country's nanotechnology and nanoscience effort.
National Institutes of Health, USA (upper left) and the National Center for Nanoscience and Technology, China (upper right) are the heart of each country's nanotechnology and nanoscience effort.

Before the dawn of the new millennium, the then President of the USA Bill Clinton was invited by Science magazine to write an editorial. In the one-page piece, Science in the 21st century, he wrote: “Imagine a new century, full of promise, molded by science, shaped by technology, powered by knowledge. We are now embarking on our most daring explorations, unraveling the mysteries of our inner world and charting new routes to the conquest of disease” [1]. In 2000, the US government firmly kicked off its significant and influential National Nanotechnology Initiative (NNI) program after integrating all resources from Federal agencies, including National Science Foundation, Department of Defense, Department of Energy, Department of Health and Human Services (NIH), National Institute of Standard Technology (NIST), National Aeronautics and Space Administration (NASA), Environmental Protection Agency (EPA), Homeland Security, United States Department of Agriculture (USDA), and Department of Justice.

The NNI established four goals: (1) to advance a world-class nanotechnology research and development program; (2) to foster the transfer of new technologies into products for commercial and public benefit; (3) to develop and sustain educational resources, a skilled workforce, and supporting infrastructure and tools to advance nanotechnology; and (4) to support responsible development of nanotechnology. The NNI significantly pushes nanotechnology research forward. In 2006, the prominence of nanotechnology research began to exceed medical research in terms of publication rate. That trend appears to be continuing as a result of the growth of products in commerce using nanotechnology and, for example, five-fold growth in number of countries with nanomaterials research centers. The nanoscience and nanotechnology subject category of the Journal Citation Report (JCR) published by Thomson Reuters has increased rapidly. Correspondingly, both impact factors (published by Thomson Reuters) and SCImago Journal Rank values (SJR is published by Elsevier's Scopus and powered by Google's PageRank algorithms) of journals in the nanotechnology subject category have increased rapidly [2]. The aggregate impact factor of nanoscience and nanotechnology has been rising at a breathtaking rate, compared with other subject categories, reaching the top 10 after 2011. The hype and hope of nanotechnology challenging many previously unimaginable goals are especially high now, and many believe in forthcoming breakthroughs in the areas of nanomaterial-based diagnostic imaging, complementation of diagnostic tools combined with therapeutic modalities (i.e., theranostics), or nanoencapsulation and nano-carriers of biotechnology products.

Today, it is estimated that total NNI funding, including the fiscal year 2014, is about $170 billion. Currently, there are more than 60 countries that have launched national nanotechnology programs [3]. Governments and industry have invested millions of dollars in research funding in this rapidly growing field. By 2015, approximately one quarter trillion dollars will have been invested in nanotechnology by the American government and private sectors collectively. The continuous strategic investment in nanotechnology has made the United States a global leader in the field.

Ten years ago, when AAAS celebrated the 125th anniversary of the journal Science, it invited the President of Chinese Academy of Science (CAS) Chunli Bai to write an essay for the special section Global Voice of Science. The CAS President Chunli Bai's essay, Ascent of Nanoscience in China [4] described the then development of nanotechnology and nanoscience in the country and openly announced the government's ambition to compete with other countries in the field. In 2006, the Chinese government announced its Medium and Long-term Plan for the Development of Science and Technology (2006–2020), which identified nanotechnology as “a very promising area that could give China a chance of great-leap-forward development”. The plan introduced the new Chinese Science & Technology policy guidelines, which were later implemented by the Ministry of Science and Technology (MOST) that operates Nanoscience Research as a part of the State Key Science Research Plans. So far the Nanoscience Research program has invested about 1.0 billion RMB to support 28 nanotechnology projects. All of these endeavors led to the recent significantly rapid rise of nanotechnology in China as evidenced by its publications, industrial R&D and applications in the field.

The rapid development of nanotechnology-based science and technology in China attracted worldwide attention including from Demos, one of the UK's most influential think tanks. Led by Wilsdon and Keeley, Demos completed an 18-month study, interviewing many leading scientists and policy makers of 71 Asian organizations, including two well-known Chinese nanotechnology academics Dr. Chen Wang (the then Director of National Center for Nanoscience and Technology) and Academician Zihe Rao (Director of CAS Institute of Biophysics). After completion of the project, Wilsdon and Keeley published their findings in the book, China: The next science superpower?” [5]. The authors wrote, “China in 2007 is the world's largest technocracy: a country ruled by scientists and engineers who believe in the power of technology to deliver social and economic progress. Right now, the country is at an early stage in the most ambitious program of research investment since John F Kennedy embarked on the race to the moon. But statistics fail to capture the raw power of the changes that are under way, and the potential for Chinese science and innovation to head in new and surprising directions. Is China on track to become the world's next science superpower?” Indeed, in recent years, China has emerged not only as a mass manufacturer, but also as one of the world's leading nanotechnology nations. Many nanomaterial-based semiconductor products come from China and the country dominates in the nanotechnology area of most-cited academic articles: the top eighteen out of the twenty scholars are of Chinese origin [6].

Changes in nanotechnology-related geopolitical landscape

With strong governmental and private sector supports, nanotechnology and nanoscience R&D has developed rapidly in both the USA and China. As shown in Fig. 1A, from 2003 to 2013, the USA led in the area of global nanotechnology publications in terms of the numbers of papers and their quality determined by the number of citations and H-index. China followed USA in the field. For instance, the total nanotechnology publications from USA were 160,870 with total citations of 4056,278, whereas, China published 154,946 papers with total citations of 2049,072. The quality of an article is usually judged by the number of citations it receives, although other measures such as the number of downloads are becoming more accepted and used [2].

The leading countries that published most nanotechnology-related papers and their research focuses (2003–2013). (A) The publications and their quality analysis; the comprehensive normalized values are calculated by the weighted statistics. (B) Key research focuses of the top countries; The keywords are ranked according to their use frequency; (C) publication ratio of China to USA in the selected areas. When the ratio is <1, it indicates that USA is leading in the area, and vice versa. C also indicates that China produced more nanotechnology papers than USA did after 2010.
The leading countries that published most nanotechnology-related papers and their research focuses (2003–2013). (A) The publications and their quality analysis; the comprehensive normalized values are calculated by the weighted statistics. (B) Key research focuses of the top countries; The keywords are ranked according to their use frequency; (C) publication ratio of China to USA in the selected areas. When the ratio is <1, it indicates that USA is leading in the area, and vice versa. C also indicates that China produced more nanotechnology papers than USA did after 2010.

Based on the total number of publications and related citations, we have used weighted statistics to calculate the top countries actively involved in nanotechnology research (see original publication for full details). The statistics show that USA ranks number one, followed by China, Germany, Japan, Korea, France, UK, India, Italy, Spain, Taiwan (China), and others (Fig. 1A). EU countries are not too far behind in the field. Further analysis indicates that the number of nanotechnology-related publications increased from 23,957 in 2003 to 107,371 in 2013 world-wide (an increase of 4.48-folds). Among them, 3592 and 30.479 papers were contributed by China in 2003 and in 2013, respectively, that is an increase of 8.49 folds, which is about 2-fold higher than the global publication increase rate.

Bibliometric data of twenty leading nanotechnology journals shows that the USA is leading in nanotechnology research by far (see original publication for full details). The USA contributed 22,067 papers to the twenty journals from 2003 to 2013, whereas, China only published 3421 papers in these journals. If the analysis is limited to papers published in journals with an impact factor >20, the USA originated 1068 papers, followed by EU countries Germany (221), UK (193), France (149), and finally Japan (121). China only produced 76 papers with an impact factor >20, demonstrating that China has some significant hurdles to overcome to join the world's top countries in nanotechnology development. Interestingly, China is not lagging behind world leaders in all areas, for example, the gap between the USA and China is narrower in the field of nanomaterial research. Publications from China in Advanced Materials, Advanced Functional Materials, and Angew. Chem. Int. Edit. are not much less than those from the USA. In fact, China is leading in nanocomposites, chemical synthesis, and photocatalysis research (Fig. 1B and C). Chinese scientists published 1712 and 1580 papers in chemical synthesis and photocatalysis (from 2003 to 2013), respectively. The numbers exceed those from India, South Korea, Japan, USA, France, Germany, UK and Italy combined, suggesting that Chinese researchers have evolved their own research focuses and strengths over the years. On the other hand, this fact may also indicate an over-investment of resources in this area.

A list of the top ten universities and institutes world-wide (see original paper for full details), as well as those located within USA or China who contribute the most nanotechnology publications, reveals that the authorship of China's nanotechnology publications is mostly concentrated in a small group of prestigious institutes and universities, reflecting the more centralized governance of China science, while authorship in the USA is more widely distributed. Indeed, the CAS possesses more resources than other competitors in China.

The geopolitical differences between the USA and China are also reflected in nanotechnology-related patent applications and industrialization. The numbers of nanotechnology-related patent applications to the US Patent and Trademark Office (USPTO), or the State Intellectual Property Office of China (SIPO) have increased from 405 in 2000 to 3729 in 2008 in USA, or from 105 in 2000 to 5030 in 2008 in China [7]. According to the China Patent Abstract Database managed by the SIPO, there were 30,863 nanotechnology patent applications from 1985 to 2009, and most of them were published after 2003. The central government has already built several state-level nanotechnology R&D incubators or bases, including the National Center for Nanoscience and Technology of China in Beijing, The State Engineering Research Center for Nanotechnology and Applications in Shanghai, National Institute of Nanotechnology and Engineering in Tianjin, Zhejiang–California International NanoSystems Institute, International Innovation Incubator of Nanotechnology, in Suzhou. In general, Beijing and Shanghai remain the two dominant nanotechnology centers, followed by Jiangsu and Zhejiang, reflecting the regional divergence of Chinese nanotechnology development [8].

The China–USA relationship is as compelling as it is complex. Approximately, one out of ten professionals in Silicon Valley's high-tech workforce is from mainland China [8]. In today's global economy, the two great countries compete with each other in nanotechnology in a parallel and compatible manner. Historically, the United States has led the global high-tech and nanotechnology fields. However, the gap between USA and China in nanotechnology has narrowed significantly in recent years and American nanotechnology leadership faces challenges from all over the world. With improved investment in research infrastructure and funding, China is sustaining the fastest economic growth in the world. Citizens’ participation in nanoscience and nanotechnology-related consensus conferences or stakeholder dialogues has become normal. This has not only had a significant impact on nanotechnology development in China, but also is democratically legitimate. Interest-based civil society interventions play an important role in the polycentric governance of nanoscience and nanotechnology to ensure that the related policies and regulations are made prudently after open argument and discussions [9]. It would be interesting to watch, debate and decide which type of governmental system, the centralized one-party or the almost equally-divided two-party system, can more efficiently and effectively utilize public resources to produce nanotechnology products that better serve their own taxpayers, and the worldwide community as well.

Acknowledgements

*Fuzhou University and Rutgers University.

The authors are very grateful for supports from China MOST grant 2015CB931804 and NSFC grant 81273548 (LJ)81571802 (YG)21275002 (ZW); and US NIH grants (PJS)R01 AI117776 (NIAID/NIH)R37 AI051214 (NIAID/NIH)R01 CA155061 (NCI/NIH), andU54 AR055073 (NIAMS/NIH); the Graduate Student Fellowship Award from the American Association of Pharmaceutical Scientists Foundation (HYD).

This paper was originally published in Nano Today 11(1) (2016) 7–12, doi:10.1016/j.nantod.2016.02.001

References

[1] B. Clinton. Science, 276 (1997), 1951

[2] M.L. Grieneisen, M. Zhang. Nat. Nanotechnol., 7 (2012), 273–274

[3] L. Jia, Y. Zhao, L. Jie. Nano Today, 6 (2011), 6–11

[4] C.L. Bai. Science, 309 (2005), 61–63

[5] J. Wilsdon, J. Keeley. China: The Next Science Superpower? Demos, London (2007)

[6] R.N. Kostoff, J.A. Stump, D. Johnson, J. Murday, C.G.Y. Lau, W. Tolles. J. Nanopart. Res., 8 (2006), 310–321

[7] Y. Dang, Y. Zhang, L. Fan, H. Chen, M.C. Roco. J. Nanopart. Res., 12 (2010), 687–706

[8] Y. Motoyama, C. Cao, R. Appelbaum. Technol. Forecast. Soc. Change, 81 (2014), 11–21

[9] C. Toumey. Nat. Nanotechnol., 10 (2015), 9–10