Abstract: Fe-based alloys with a nanocrystalline-amorphous nanostructure exhibit superior soft-magnetic performances; however they generally suffer from the low magnetization because of their heavy doping for an acceptable manufacturability. In this study, we proposed a revolutionary nanostructure-construction concept based on preforming dense nuclei in the melt-quenching process with a critical cooling-rate and refining the nano-structure via transient metalloid-rich interfaces. A novel alloy composition of Fe85.5B10Si2P2C0.5 was developed via our multi-metalloid stabilization and critical formability strategies by using a total of only 4.6 wt. % light metalloids. This unique alloy design effort leads to unprecedented magnetic properties with the super-high Bs of 1.87?T and µe of 1.0–2.5?×?104, which outperform all commercial counterparts and have a high potential to substitute for commercial bulk Si-steels currently used for soft-magnetic applications. This hetero-structuring and lean-alloying strategy provides a paradigm for the next-generation of magnetic materials.

Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability
Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability
Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2020.09.030