High energy density batteries and high power density supercapacitors have attracted much attention because they are crucial to the power supply of future portable electronic devices, electric automobiles, unmanned aerial vehicles, etc. The electrode materials are key components for batteries and supercapacitors, which influence the practical energy and power density. Metal-organic frameworks possessing unique morphology, high specific surface area, functional linkers, and metal sites are excellent electrode materials for electrochemical energy storage devices. Herein, we review and comment on recent progress in metal-organic framework-based lithium-ion batteries, sodium-ion batteries, lithium-air batteries, lithium-sulfur/selenium batteries, and supercapacitors. Future perspectives and directions of metal-organic framework-based electrochemical energy storage devices are put forward on the basis of theoretical knowledge from the reported literature and our experimental experience.

Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2016.10.003