This is a graphic representation of nanoparticles embedded in glass. Image: University of Adelaide.
This is a graphic representation of nanoparticles embedded in glass. Image: University of Adelaide.

Researchers at the University of Adelaide in Australia have developed a method for embedding light-emitting nanoparticles into glass without losing any of their unique properties – a major step towards 'smart glass' applications such as 3D display screens or remote radiation sensors.

This new ‘hybrid glass’ successfully combines the properties of special luminescent (or light-emitting) nanoparticles with the well-known properties of glass, such as transparency and the ability to be processed into various shapes, including very fine optical fibers. The research, conducted in collaboration with researchers at Macquarie University and the University of Melbourne, is reported in a paper in Advanced Optical Materials.

"These novel luminescent nanoparticles, called upconversion nanoparticles, have become promising candidates for a whole variety of ultra-high tech applications such as biological sensing, biomedical imaging and 3D volumetric displays," says lead author Tim Zhao from the University of Adelaide's School of Physical Sciences and Institute for Photonics and Advanced Sensing (IPAS).

"Integrating these nanoparticles into glass, which is usually inert, opens up exciting possibilities for new hybrid materials and devices that can take advantage of the properties of nanoparticles in ways we haven't been able to do before," he continues. "For example, neuroscientists currently use dye injected into the brain and lasers to be able to guide a glass pipette to the site they are interested in. If fluorescent nanoparticles were embedded in the glass pipettes, the unique luminescence of the hybrid glass could act like a torch to guide the pipette directly to the individual neurons of interest."

Although this method was developed with lanthanide-containing upconversion nanocrystals, the researchers believe their new 'direct-doping' approach can be generalized to other nanoparticles with interesting photonic, electronic and magnetic properties. This means there could be many different applications – depending on the properties of the nanoparticle. "If we infuse glass with a nanoparticle that is sensitive to radiation and then draw that hybrid glass into a fiber, we could have a remote sensor suitable for nuclear facilities," explains Zhao.

To date, methods used to integrate upconversion nanoparticles into glass have relied on the in-situ growth of nanoparticles within the glass.

"We've seen remarkable progress in this area but the control over the nanoparticles and the glass compositions has been limited, restricting the development of many proposed applications," says project leader Heike Ebendorff-Heideprem, who is deputy director of IPAS.

"With our new direct doping method, which involves synthesizing the nanoparticles and glass separately and then combining them using the right conditions, we've been able to keep the nanoparticles intact and well dispersed throughout the glass. The nanoparticles remain functional and the glass transparency is still very close to its original quality. We are heading towards a whole new world of hybrid glass and devices for light-based technologies."

This story is adapted from material from the University of Adelaide, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.