This image illustrates the evolution-inspired process governing the self-selection of peptide nanostructures. Image: Robert Mart – Cardiff University.
This image illustrates the evolution-inspired process governing the self-selection of peptide nanostructures. Image: Robert Mart – Cardiff University.

Research led by Rein Ulijn, director of the CUNY Advanced Science Research Center (ASRC)'s Nanoscience Initiative and professor of chemistry at Hunter College, could pave the way for the development of dynamically-evolving polymers that form spontaneously by adapting to their environment. This research, which is reported in a paper in Nature Nanotechnology, could lead to a number of product possibilities in applications such as drug delivery, food science and cosmetics.

Ulijn and his team discovered that if peptides – strings of polymers composed of amino acids – are allowed to continuously reorganize their sequences, they will eventually form polymers that are best suited to their environment, at the expense of less favored structures. Using this method, which is inspired by the principles of evolution, Ulijn's team was able to identify a range of heretofore unseen peptide-based materials. While previous research in peptide nanotechnology has centered on chance discoveries or painstaking design, this new approach allows for the unbiased discovery by self-selection of optimized structures.

"In our quest to find materials based on biology's building blocks – but which are much simpler – it is difficult to rationally design these materials because there are very many possible permutations that could be explored," Ulijn said.

"Instead of designing rationally to improve materials, we've found a way to autonomously evolve," said Charalampos Pappas, first author and a former CUNY ASRC postdoctoral researcher. "We achieve this by having components dynamically connect, rearrange and disconnect, resulting in the spontaneous selection and formation of the most stable self-assembling nanostructures."

This paper is a continuation of Ulijn's research into tunable peptide structures, which have shown great promise in a variety of commercial applications. These include: biodegradable nanospheres for use in drug delivery applications; nanofibers that can form gel-phase materials, which could find use in a variety of applications, including cosmetics; and biodegradable plastics that can withstand harsh conditions.

This evolution-based peptide discovery method does not yet cover the full range of chemical functionalities present in natural materials and is currently a time-consuming process. "These issues can potentially be overcome by automation and miniaturization of the process, which is the focus of current research," Ulijn said.

This story is adapted from material from CUNY Advanced Science Research Center, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.