Empa researchers have successfully attached carbon nanotube electrodes to individual graphene nanoribbons. Image: EMPA.
Empa researchers have successfully attached carbon nanotube electrodes to individual graphene nanoribbons. Image: EMPA.

Quantum technology is promising, but also perplexing. In the coming decades, it is expected to spur various technological breakthroughs: smaller and more precise sensors, highly secure communication networks, and powerful computers that can help develop new drugs and materials, control financial markets, and predict the weather much faster than current computing technology ever could.

To achieve this will require so-called quantum materials – substances that exhibit pronounced quantum physical effects. One such material is graphene. This two-dimensional (2D) structural form of carbon has various unusual physical properties, such as extraordinarily high tensile strength, thermal and electrical conductivity – as well as certain quantum effects.

Restricting the already 2D material even further by giving it a ribbon-like shape gives rise to a range of controllable quantum effects. For several years now, Mickael Perrin and his team in the Transport at Nanoscale Interfaces laboratory at the Swiss Federal Laboratories for Materials Science and Technology (EMPA) have been conducting research on these graphene nanoribbons.

"Graphene nanoribbons are even more fascinating than graphene itself," explains Perrin. "By varying their length and width, as well as the shape of their edges, and by adding other atoms to them, you can give them all kinds of electrical, magnetic and optical properties."

Research on the promising ribbons isn't easy. The narrower the ribbon, the more pronounced its quantum properties are – but it also becomes more difficult to access a single ribbon at a time. This is precisely what must be done to understand the unique characteristics and possible applications of this quantum material and distinguish them from collective effects.

Now, Perrin and Empa researcher Jian Zhang, together with an international team, have succeeded for the first time in contacting individual graphene nanoribbons. They report their achievement in a paper in Nature Electronics.

"A graphene nanoribbon that is just nine carbon atoms wide measures as little as 1nm in width," Zhang says. To ensure that only a single nanoribbon is contacted, the researchers employed electrodes of a similar size – carbon nanotubes that were also only 1nm in diameter.

The researchers obtained the graphene nanoribbons via a strong and long-standing collaboration with Empa's nanotech@surfaces laboratory, headed by Roman Fasel. "Roman Fasel and his team have been working on graphene nanoribbons for a long time and can synthesize many different types with atomic precision from individual precursor molecules," Perrin explains. The precursor molecules came from the Max Planck Institute for Polymer Research in Mainz, Germany.

As is often required for advancing the state of the art, interdisciplinarity was key, and different international research groups were involved, each bringing in their own specialty to the table. The carbon nanotubes were grown by a research group at Peking University in China, while to interpret the results of the study the Empa researchers collaborated with computational scientists at the University of Warwick in the UK. "A project like this would not be possible without collaboration," Zhang emphasizes.

Contacting individual ribbons with nanotubes posed a considerable challenge for the researchers. "The carbon nanotubes and the graphene nanoribbons are grown on separate substrates," Zhang explains. "First, the nanotubes need to be transferred to the device substrate and contacted by metal electrodes. Then we cut them with high-resolution electron-beam lithography to separate them into two electrodes."

Finally, the ribbons are transferred onto the same substrate. Precision is key: even the slightest rotation of the substrates can significantly reduce the probability of a successful contact. "Having access to high-quality infrastructure at the Binnig and Roher Nanotechnology Center at IBM Research in Rüschlikon was essential to test and implement this technology," Perrin says.

The scientists confirmed the success of their experiment through charge-transport measurements. "Because quantum effects are usually more pronounced at low temperature, we performed the measurements at temperatures close to absolute zero in a high vacuum," Perrin explains.

But he is quick to add yet another particularly promising quality of the graphene nanoribbons: "Due to the extremely small size of these nanoribbons, we expect their quantum effects to be so robust that they are observable even at room temperature." This could allow Perrin and his team to design and operate chips that actively harness quantum effects without the need for an elaborate cooling infrastructure.

“This project enables the realization of single nanoribbon devices, not only to study fundamental quantum effects such as how electrons and phonons behave at the nanoscale, but also to exploit such effects for applications in quantum switching, quantum sensing and quantum energy conversion,” adds Hatef Sadeghi, a professor at the University of Warwick who collaborated on the project.

Graphene nanoribbons are not ready for commercial applications just yet, and there is still a lot of research to be done. In a follow-up study, Zhang and Perrin aim to manipulate different quantum states on a single nanoribbon. They also plan to create devices based on two ribbons connected in series, forming a so-called double quantum dot. Such a circuit could serve as a qubit – the smallest unit of information in a quantum computer.

This story is adapted from material from EMPA, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.