"Refrigeration and air conditioning currently devour a fifth of the energy produced worldwide, and demand for cooling is only going up."Xavier Moya, University of Cambridge

Researchers from the UK and Spain have identified an eco-friendly solid that could replace the inefficient and polluting gases used in most refrigerators and air conditioners.

When put under pressure, plastic crystals of neopentylglycol yield huge cooling effects – enough to make them competitive with conventional coolants. In addition, this material is inexpensive, widely available and functions at close to room temperature. The researchers report their findings in a paper in Nature Communications.

The gases currently used in the vast majority of refrigerators and air conditioners – hydrofluorocarbons and hydrocarbons (HFCs and HCs) – are toxic and flammable. When they leak into the air, they also contribute to global warming.

"Refrigerators and air conditioners based on HFCs and HCs are also relatively inefficient," explained Xavier Moya from the University of Cambridge in the UK, who led the research with Josep Lluís Tamarit from the Universitat Politècnica de Catalunya in Spain. "That's important because refrigeration and air conditioning currently devour a fifth of the energy produced worldwide, and demand for cooling is only going up."

To solve these problems, materials scientists around the world have sought alternative solid refrigerants. Moya, a research fellow in Cambridge's Department of Materials Science and Metallurgy, is one of the leaders in this field.

In the paper, Moya and his collaborators from the Universitat Politècnica de Catalunya and the Universitat de Barcelona in Spain describe the enormous thermal changes under pressure that they achieved with plastic crystals.

Conventional cooling technologies rely on the thermal changes that occur when a compressed fluid expands. Most cooling devices work by compressing and expanding fluids such as HFCs and HCs. As the fluid expands, it decreases in temperature, cooling its surroundings.

With solids, cooling is achieved by changing the material's microscopic structure. This change can be achieved by applying a magnetic field, an electric field or through mechanical force. For decades, these caloric effects have fallen behind the thermal changes available in fluids, but the discovery of colossal barocaloric effects in a plastic crystal of neopentylglycol (NPG) and other related organic compounds has now leveled the playing field.

Due to the nature of their chemical bonds, organic materials such as NPG are fairly easy to compress, and NPG is already commonly used in the synthesis of paints, polyesters, plasticizers and lubricants, making it widely available and inexpensive.

NPG's molecules, composed of carbon, hydrogen and oxygen, are nearly spherical and interact with each other only weakly. These loose bonds in the material’s microscopic structure permit its molecules to rotate relatively freely.

The word ‘plastic’ in ‘plastic crystals’ refers not to their chemical composition but rather to their malleability. Plastic crystals lie at the boundary between solids and liquids.

Compressing NPG yields unprecedentedly large thermal changes due to molecular reconfiguration. The temperature change achieved is comparable with those exploited commercially in HFCs and HCs.

The discovery of colossal barocaloric effects in a plastic crystal should bring barocaloric materials to the forefront of research and development for achieving safe, environmentally friendly cooling without compromising performance. Moya is now working with Cambridge Enterprise, the commercialization arm of the University of Cambridge, to bring this technology to the market.

This story is adapted from material from the University of Cambridge, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.