"Our work has established a baseline for high energy devices that also operate at high power, effectively widening the range of potential applications."Ash Stott, University of Surrey

Experts from the University of Surrey in the UK believe their dream of clean energy storage is a step closer after they unveiled a ground-breaking supercapacitor material that is able to store and deliver electricity at high power rates, particularly for mobile applications.

In a paper in Energy and Environmental Materials, researchers from Surrey's Advanced Technology Institute (ATI) revealed their new technology, which has the potential to revolutionize energy use in electric vehicles and reduce renewable-based energy loss in the national grid. The researchers also believe their technology can help push forward the advancement of wind, wave and solar energy by smoothing out the intermittent nature of these energy sources.

The ATI's supercapacitor technology is based on a polymer called polyaniline (PANI), which stores energy through a mechanism known as ‘pseudocapacitance’. This cheap polymer material is conductive and can be used as the electrode in a supercapacitor device. The electrode stores charge by trapping ions within the electrode. It does this by exchanging electrons with the ion, which ‘dopes’ the material.

In their paper, the researchers detail how they developed a new three-layer composite using carbon nanotubes, PANI and hydrothermal carbon. This composite demonstrates remarkable rate-capability at high energy densities, independent of the power use.

"The future of global energy will depend on consumers and industry using and generating energy more efficiently and supercapacitors have already been proven to be one of the leading technologies for intermittent storage as well as high-power delivery," said Ash Stott, lead scientist on the project and a PhD student at the University of Surrey. "Our work has established a baseline for high energy devices that also operate at high power, effectively widening the range of potential applications."

"This highly ambitious and impactful work has the potential to change the way we all live our lives – and it might be what is needed to make the change for an efficient and fast-charging solution of harvested energy from the environment," said Ravi Silva, director of the ATI at the University of Surrey. "We see this having an impact in all sorts of industries – from all wearable technology to mobile Internet of Things applications that will launch the 5G revolution. The potential for our supercapacitor is limitless."

This story is adapted from material from the University of Surrey, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.