A two-dimensional coat of a perovskite compound is the basis for an efficient solar cell that might stand up to environmental wear and tear, unlike earlier perovskites. Engineers at Rice University have raised the photovoltaic efficiency of 2D perovskites by up to 18%. Photo: Jeff Fitlow/Rice University.
A two-dimensional coat of a perovskite compound is the basis for an efficient solar cell that might stand up to environmental wear and tear, unlike earlier perovskites. Engineers at Rice University have raised the photovoltaic efficiency of 2D perovskites by up to 18%. Photo: Jeff Fitlow/Rice University.

Engineers at Rice University have achieved a new benchmark in the design of atomically thin solar cells made of semiconducting perovskites, boosting their efficiency while retaining their ability to stand up to the environment.

The lab of Aditya Mohite in Rice’s George R. Brown School of Engineering has discovered that sunlight itself can contract the space between atomic layers in 2D perovskites enough to improve the material’s photovoltaic efficiency by up to 18%. This is an astounding leap in a field where progress is often measured in fractions of a percent.

“In 10 years, the efficiencies of perovskites have skyrocketed from about 3% to over 25%,” Mohite said. “Other semiconductors have taken about 60 years to get there. That’s why we’re so excited.” The engineers report their findings in a paper in Nature Nanotechnology.

Perovskites are compounds with cube-like crystal lattices and are highly efficient light harvesters. Their potential has been known for years, but they present a conundrum: they’re good at converting sunlight into energy, but sunlight and moisture degrade them.

“A solar cell technology is expected to work for 20 to 25 years,” said Mohite, an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering. “We’ve been working for many years and continue to work with bulk perovskites that are very efficient but not as stable. In contrast, 2D perovskites have tremendous stability but are not efficient enough to put on a roof. The big issue has been to make them efficient without compromising the stability.”

Together with collaborators in the US and France, the Rice engineers have discovered that in certain 2D perovskites sunlight effectively shrinks the space between the atoms, improving their ability to carry a current.

“We find that as you light the material, you kind of squeeze it like a sponge and bring the layers together to enhance the charge transport in that direction,” Mohite said. The researchers found that placing a layer of organic cations between the iodide layer on top and the lead layer on the bottom enhanced interactions between the layers.

“This work has significant implications for studying excited states and quasiparticles in which a positive charge lies on one layer and the negative charge lies on the other and they can talk to each other,” Mohite said. “These are called excitons, which may have unique properties.

“This effect has given us the opportunity to understand and tailor these fundamental light-matter interactions without creating complex heterostructures like stacked 2D transition metal dichalcogenides.”

These experimental findings were confirmed by computer models produced by colleagues in France. “This study offered a unique opportunity to combine state of the art ab initio simulation techniques, material investigations using large scale national synchrotron facilities and in situ characterizations of solar cells under operation,” said Jacky Even, a professor of physics at the Institute of Electronics and Digital Technologies (INSA) in Rennes, France. “The paper depicts for the first time how a percolation phenomenon suddenly releases the charge current flow in a perovskite material.”

The results showed that after 10 minutes under a solar simulator at one-sun intensity, the 2D perovskites contracted by 0.4% along their length and by about 1% top to bottom. The researchers also demonstrated that the effect can be seen in just one minute under five-sun intensity.

“It doesn’t sound like a lot, but this 1% contraction in the lattice spacing induces a large enhancement of electron flow,” said Rice graduate student and co-lead author Wenbin Li. “Our research shows a threefold increase in the electron conduction of the material.”

At the same time, the nature of the lattice made the material less prone to degrading, even when heated to 80°C (176°F). And once the light was turned off, the lattice quickly relaxed back to its normal configuration.

“One of the major attractions of 2D perovskites was they usually have organic atoms that act as barriers to humidity, are thermally stable and solve ion migration problems,” said graduate student and co-lead author Siraj Sidhik. “3D perovskites are prone to heat and light instability, so researchers started putting 2D layers on top of bulk perovskites to see if they could get the best of both. We thought, let’s just move to 2D only and make it efficient.”

To observe the material contraction in action, the team made use of two US Department of Energy (DOE) Office of Science user facilities: the National Synchrotron Light Source II at DOE’s Brookhaven National Laboratory and the Advanced Photon Source (APS) at DOE’s Argonne National Laboratory.

Argonne physicist Joe Strzalka, a co-author of the paper, used the ultrabright X-rays of the APS to capture minuscule structural changes in the material in real time. The sensitive instruments at beamline 8-ID-E of the APS allow for 'operando' studies, meaning those conducted while the device is undergoing controlled changes in temperature or environment under normal operating conditions. In this case, Strzalka and his colleagues exposed the photoactive material from the solar cell to simulated sunlight while keeping the temperature constant, and observed tiny contractions at the atomic level.

As a control experiment, Strzalka and his co-authors also kept the room dark and raised the temperature, observing the opposite effect – an expansion of the material. This showed that it was the light itself, not the heat it generated, that caused the transformation.

“For changes like this, it’s important to do operando studies,” Strzalka said. “The same way your mechanic wants to run your engine to see what’s happening inside it, we want to essentially take a video of this transformation instead of a single snapshot. Facilities such as the APS allow us to do that.”

Strzalka noted that the APS is in the midst of a major upgrade that will increase the brightness of its X-rays by up to 500 times. When it’s complete, he said, the brighter beams and faster, sharper detectors should allow scientists to spot these changes with even more sensitivity.

That could help the Rice team tweak the materials for even better performance. “We’re on a path to get greater than 20% efficiency by engineering the cations and interfaces,” Sidhik said. “It would change everything in the field of perovskites, because then people would begin to use 2D perovskites for 2D perovskite/silicon and 2D/3D perovskite tandems, which could enable efficiencies approaching 30%. That would make it compelling for commercialization.”

This story is adapted from material from Rice University, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.